跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.34) 您好!臺灣時間:2025/10/31 04:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅翊偉
研究生(外文):Yi-Wei Lou
論文名稱:多形性神經膠母細胞瘤及其腫瘤幹細胞表面醣分子之探討
論文名稱(外文):Investigation of Surface Glycans on Glioblastoma multiforme and Its Stem Cells
指導教授:翁啟惠翁啟惠引用關係
指導教授(外文):Chi-Huey Wong
口試委員:林國儀楊文光沈家寧邱士華杜邦憲神奈木玲兒
口試委員(外文):Kuo-I LinWen-Kuang YangChia-Ning ShenShih-Hwa ChiouPang-Hsien TuReiji Kannagi
口試日期:2014-01-22
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:106
中文關鍵詞:多形性神經膠母細胞瘤階段特異性胚胎抗原-4單株抗體醣脂腫瘤幹細胞神經節&;#33527;脂標靶治療腫瘤相關抗原
外文關鍵詞:glioblastoma multiformeSSEA-4monoclonal antibodyglycolipidcancer stem cellgangliosidetargeted therapytumor-associated antigenGD2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多形性神經膠母細胞瘤被世界衛生組織定義為第四級的星狀細胞瘤,是最常見也是最惡性的成人腦瘤。根據統計,即使接受過手術切除、放射線治療和化學治療,病人的中位存活時間仍只有14.6個月,癒後情況相當差。因此,針對此腫瘤發展一個新的治療方式是相當重要的。我們在17株多型性神經膠母細胞瘤細胞株上利用流式細胞技術分析其表面醣分子之表現,結果顯示其中12株具有階段特異性胚胎抗原-4(SSEA-4)之表現。而高效能薄層層析免疫染色與基質輔助雷射脫附游離質譜分析結果確定了SSEA-4分子的存在與結構。我們利用免疫組織化學染色法分析病人檢體顯示著有百分之六十九的病人其腦癌細胞具有SSEA-4的表現。相比之下,正常人類大腦組織則鮮少有SSEA-4的表現。此外,免疫組織化學染色結果指出SSEA-4的表現與星狀細胞瘤惡化程度有著成正比的關係。接著,我們利用SSEA-4的單株抗體(MC813-70)可以在體外誘發補體依賴型細胞毒殺作用在多型性神經膠母細胞瘤細胞上而引發細胞死亡。並且在實驗老鼠動物上,SSEA-4的單株抗體能有效的抑制腫瘤的生長。進一步的實驗指出SSEA-4不僅表現在多型性神經膠母細胞瘤,我們甚至觀察到SSEA-4表現在許多不同癌症的細胞株上,因此我們認為針對SSEA-4發展治療抗體與疫苗是一個有潛力的方向。而在另一方面,我們成功地產生一群具有較高幹細胞特性的癌細胞群。而為了去找尋多形性神經膠母細胞瘤幹細胞上是否具有特定分子的表現,我們利用抗體染色去進行多種醣類的比較,這包括了醣蛋白和醣脂質。在這些被偵測的醣分子中,我們發現一神經節&;#33527;脂GD2大量表現在多形性神經膠母細胞瘤幹細胞上,更多的實驗將會闡明GD2與多形性神經膠母細胞瘤幹細胞的關係。

Glioblastoma multiforme (GBM), the grade IV astrocytoma, is the most common and aggressive brain tumor in adults. Despite advances in medical managements, the survival rate of GBM patients remains poor, suggesting that identification of GBM-specific targets for therapeutic development is urgently needed. Analysis of several glycan antigens on GBM cell lines revealed that 12 out of 17 GBM cell lines were positive for stage-specific embryonic antigen-4 (SSEA-4), and the identity of SSEA-4 was confirmed by high performance thin-layer chromatography immunostaining and mass spectrometry. Immunohistochemical staining confirmed that 38/55 (69%) of human GBM specimens, but not normal brain tissue, were SSEA-4-positive, and correlated with high-grade astrocytoma. MC813-70, an SSEA-4 specific monoclonal antibody, was found to induce complement-dependent cytotoxicity against SSEA-4hi GBM cell lines in vitro, and suppressed GBM tumor growth in mice. Since SSEA-4 is expressed on GBM and many other types of cancers, but not on normal cells, it could be a target for development of therapeutic antibodies and vaccines. On the other hand, we successfully generated a population of GBM cells with higher stemness and tumorigenicity. In order to discover the specific markers expressed on GBM stem cells, we utilized a panel of glycan-related antibodies to profile the expression of glycan epitopes, including glycoproteins or glycolipids. Among these glycans, the expression of GD2 was found to be elevated on stem-like cell population. Further study would illustrate the relationship between GD2 and GBM stem cells.

口試委員會審定書…………………………………………………………………........i
誌謝………………………………………………..…..………………………………...ii
摘要……………………………………………………..…..…………………………..iii
Abstract…………………………………...……………………………………………..iv
Table of Contents………………………………………………………………………...v
List of Figures…………………………………………………………………………viii
List of Supplementary Figures………………………………………………………….ix
List of Tables……………………………………………………………………………ix
Abbreviations…………………………………………………………………………….x
CHAPTER1: INTRODUCTION…………………………………………..…………….1
1.1 Perspective……………………………………………………………………...2
1.2 Overview of glioblastoma multiforme…………………………………………2
1.3 Glycosylation…………………………………………………………………...6
1.4 Glycosphingolipids………………………………………………………..……7
1.5 Globo-series GSLs……………………………………………………………...9
1.6 Glycans in cancers………………………………………………………….....10
1.7 Glioma-associated GSLs………………………………………………….......13
1.8 Target therapy of GBM………………………………………………………..14
1.9 GBM stem cells……………………………………………………………….15
1.10 Significance and rationale…………………………………………………...17
CHAPTER 2: MATERAILS AND METHODS………………………………………..18
2.1 Reagents………………………………………………………………………19
2.2 Flow Cytometry………………………………………………………………19
2.3 Cell Culture……………………………………………………………….......20
2.4 Immunofluorescent Staining………………………………………………….21
2.5 Immunohistochemistry……………………………………………………….21
2.6 Glycan Array Fabrication…………………………………………………….22
2.7 Antibody Binding Assay……………………………………………………...22
2.8 Sialidase Treatment…………………………………………………………...23
2.9 Extraction of Glycosphingolipids…………………………………………….23
2.10 High-Performance Thin-Layer Chromatography…………………………...24
2.11 TLC Immunostaining………………………………………………………..25
2.12 MALDI-MS Profiling and MS/MS Analysis………………………………..25
2.13 Complement-Dependent Cytotoxicity Assay…………………………….....26
2.14 In vivo Tumor Growth……………………………………………………....26
2.15 Neurosphere culture…………………………………………………………27
2.16 Quantitative real- time polymerase chain reaction……………………….....28
2.17 SDS-PAGE and western blot………………………………………………..28
CHAPTER 3: RESULTS…………………………………………………………….....30
3.1 Flow cytometric analysis of glycan epitopes revealed MC813-70 binds to GBM cell lines…………………………………………………………………………...31
3.2 Examination of MC813-70 specificity by glycan microarray………………32
3.3 Verification of MC813-70 staining on GBM cell lines by HPTLC immunostaining…………………………………………………………………...33
3.4 Sialidase treatment confirms the structure of MC813-70 antigen as an α2,3-sialyl globo-series GSL……………………………………………………...34
3.5 Analysis of DBTRG gangliosides by mass spectrometry indicates the presence of SSEA-4 glycolipid………………………………………………………….......35
3.6 Expression of SSEA-4 in GBM tissues……………………………………….36
3.7 MC813-70 Mediates CDC against GBM Cell Lines………………………….37
3.8 MC813-70 Suppresses Brain Tumor Growth in Vivo…………………….......38
3.9 Expression of SSEA-4 in Various Cancer Cell Lines…………………………38
3.10 Cells maintained in in vitro neurosphere culture expressed higher levels of stemness genes…………………………………………………………………….40
3.11 Neurosphere cells show higher potential of self-renewal and tumorogenicity…………………………………………………………………….41
3.12 Expression of GD2 is increased in neurosphere cells………………………..41
CHAPTER 4: DISCUSSION…………………………………………………………..43
CHAPTER 5: FIGURES……………………………………………………………….50
CHAPTER 6: SUPPLEMENTARY FIGURES………………………………………...74
CHAPTER 7: TABLES………………………………………………………………...77
CHAPTER 8: REFERENCES………………………………………………………….85
APPENDIX…………………………………………………………………………...106
The manuscript published on-line in Proceedings of the National Academy of Sciences of the United States of America


1.Jemal, A., F. Bray, M.M. Center, J. Ferlay, E. Ward, and D. Forman, Global cancer statistics. CA Cancer J Clin, 2011. 61(2): p. 69-90.
2.Louis, D.N., H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. Jouvet, B.W. Scheithauer, and P. Kleihues, The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol, 2007. 114(2): p. 97-109.
3.Ohgaki, H. and P. Kleihues, Genetic pathways to primary and secondary glioblastoma. Am J Pathol, 2007. 170(5): p. 1445-53.
4.Furnari, F.B., T. Fenton, R.M. Bachoo, A. Mukasa, J.M. Stommel, A. Stegh, W.C. Hahn, K.L. Ligon, D.N. Louis, C. Brennan, L. Chin, R.A. DePinho, and W.K. Cavenee, Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev, 2007. 21(21): p. 2683-710.
5.Watanabe, K., O. Tachibana, K. Sata, Y. Yonekawa, P. Kleihues, and H. Ohgaki, Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol, 1996. 6(3): p. 217-23; discussion 23-4.
6.Rasheed, B.K., R.E. McLendon, H.S. Friedman, A.H. Friedman, H.E. Fuchs, D.D. Bigner, and S.H. Bigner, Chromosome 10 deletion mapping in human gliomas: a common deletion region in 10q25. Oncogene, 1995. 10(11): p. 2243-6.
7.Ohgaki, H., P. Dessen, B. Jourde, S. Horstmann, T. Nishikawa, P.L. Di Patre, C. Burkhard, D. Schuler, N.M. Probst-Hensch, P.C. Maiorka, N. Baeza, P. Pisani, Y. Yonekawa, M.G. Yasargil, U.M. Lutolf, and P. Kleihues, Genetic pathways to glioblastoma: a population-based study. Cancer Res, 2004. 64(19): p. 6892-9.
8.Biernat, W., Y. Tohma, Y. Yonekawa, P. Kleihues, and H. Ohgaki, Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol, 1997. 94(4): p. 303-9.
9.Nakamura, M., T. Watanabe, U. Klangby, C. Asker, K. Wiman, Y. Yonekawa, P. Kleihues, and H. Ohgaki, p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol, 2001. 11(2): p. 159-68.
10.Hermanson, M., K. Funa, M. Hartman, L. Claesson-Welsh, C.H. Heldin, B. Westermark, and M. Nister, Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res, 1992. 52(11): p. 3213-9.
11.Fujisawa, H., R.M. Reis, M. Nakamura, S. Colella, Y. Yonekawa, P. Kleihues, and H. Ohgaki, Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas. Lab Invest, 2000. 80(1): p. 65-72.
12.Yan, H., D.W. Parsons, G. Jin, R. McLendon, B.A. Rasheed, W. Yuan, I. Kos, I. Batinic-Haberle, S. Jones, G.J. Riggins, H. Friedman, A. Friedman, D. Reardon, J. Herndon, K.W. Kinzler, V.E. Velculescu, B. Vogelstein, and D.D. Bigner, IDH1 and IDH2 mutations in gliomas. N Engl J Med, 2009. 360(8): p. 765-73.
13.Parsons, D.W., S. Jones, X. Zhang, J.C. Lin, R.J. Leary, P. Angenendt, P. Mankoo, H. Carter, I.M. Siu, G.L. Gallia, A. Olivi, R. McLendon, B.A. Rasheed, S. Keir, T. Nikolskaya, Y. Nikolsky, D.A. Busam, H. Tekleab, L.A. Diaz, Jr., J. Hartigan, D.R. Smith, R.L. Strausberg, S.K. Marie, S.M. Shinjo, H. Yan, G.J. Riggins, D.D. Bigner, R. Karchin, N. Papadopoulos, G. Parmigiani, B. Vogelstein, V.E. Velculescu, and K.W. Kinzler, An integrated genomic analysis of human glioblastoma multiforme. Science, 2008. 321(5897): p. 1807-12.
14.Ohgaki, H., Genetic pathways to glioblastomas. Neuropathology, 2005. 25(1): p. 1-7.
15.Ostrom, Q.T., H. Gittleman, P. Farah, A. Ondracek, Y. Chen, Y. Wolinsky, N.E. Stroup, C. Kruchko, and J.S. Barnholtz-Sloan, CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006-2010. Neuro Oncol, 2013. 15(suppl 2): p. ii1-ii56.
16.Fisher, J.L., J.A. Schwartzbaum, M. Wrensch, and J.L. Wiemels, Epidemiology of brain tumors. Neurol Clin, 2007. 25(4): p. 867-90, vii.
17.Inskip, P.D., R.E. Tarone, E.E. Hatch, T.C. Wilcosky, W.R. Shapiro, R.G. Selker, H.A. Fine, P.M. Black, J.S. Loeffler, and M.S. Linet, Cellular-telephone use and brain tumors. N Engl J Med, 2001. 344(2): p. 79-86.
18.Lahkola, A., A. Auvinen, J. Raitanen, M.J. Schoemaker, H.C. Christensen, M. Feychting, C. Johansen, L. Klaeboe, S. Lonn, A.J. Swerdlow, T. Tynes, and T. Salminen, Mobile phone use and risk of glioma in 5 North European countries. Int J Cancer, 2007. 120(8): p. 1769-75.
19.Lacroix, M., D. Abi-Said, D.R. Fourney, Z.L. Gokaslan, W. Shi, F. DeMonte, F.F. Lang, I.E. McCutcheon, S.J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg, 2001. 95(2): p. 190-8.
20.Walker, M.D., E. Alexander, Jr., W.E. Hunt, C.S. MacCarty, M.S. Mahaley, Jr., J. Mealey, Jr., H.A. Norrell, G. Owens, J. Ransohoff, C.B. Wilson, E.A. Gehan, and T.A. Strike, Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg, 1978. 49(3): p. 333-43.
21.Stupp, R., W.P. Mason, M.J. van den Bent, M. Weller, B. Fisher, M.J. Taphoorn, K. Belanger, A.A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R.C. Janzer, S.K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J.G. Cairncross, E. Eisenhauer, and R.O. Mirimanoff, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med, 2005. 352(10): p. 987-96.
22.Hegi, M.E., A.C. Diserens, T. Gorlia, M.F. Hamou, N. de Tribolet, M. Weller, J.M. Kros, J.A. Hainfellner, W. Mason, L. Mariani, J.E. Bromberg, P. Hau, R.O. Mirimanoff, J.G. Cairncross, R.C. Janzer, and R. Stupp, MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med, 2005. 352(10): p. 997-1003.
23.Van Meir, E.G., C.G. Hadjipanayis, A.D. Norden, H.K. Shu, P.Y. Wen, and J.J. Olson, Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin, 2010. 60(3): p. 166-93.
24.Krex, D., B. Klink, C. Hartmann, A. von Deimling, T. Pietsch, M. Simon, M. Sabel, J.P. Steinbach, O. Heese, G. Reifenberger, M. Weller, and G. Schackert, Long-term survival with glioblastoma multiforme. Brain, 2007. 130(Pt 10): p. 2596-606.
25.Schachter, H., The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconj J, 2000. 17(7-9): p. 465-83.
26.Yan, A. and W.J. Lennarz, Unraveling the mechanism of protein N-glycosylation. J Biol Chem, 2005. 280(5): p. 3121-4.
27.Esko, J.D. and S.B. Selleck, Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem, 2002. 71: p. 435-71.
28.Maccioni, H.J., C.G. Giraudo, and J.L. Daniotti, Understanding the stepwise synthesis of glycolipids. Neurochem Res, 2002. 27(7-8): p. 629-36.
29.Kinoshita, T., K. Ohishi, and J. Takeda, GPI-anchor synthesis in mammalian cells: genes, their products, and a deficiency. J Biochem, 1997. 122(2): p. 251-7.
30.Comelli, E.M., S.R. Head, T. Gilmartin, T. Whisenant, S.M. Haslam, S.J. North, N.K. Wong, T. Kudo, H. Narimatsu, J.D. Esko, K. Drickamer, A. Dell, and J.C. Paulson, A focused microarray approach to functional glycomics: transcriptional regulation of the glycome. Glycobiology, 2006. 16(2): p. 117-31.
31.Parodi, A.J., Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. Biochem J, 2000. 348 Pt 1: p. 1-13.
32.Ornitz, D.M. and P. Leder, Ligand specificity and heparin dependence of fibroblast growth factor receptors 1 and 3. J Biol Chem, 1992. 267(23): p. 16305-11.
33.Miljan, E.A. and E.G. Bremer, Regulation of growth factor receptors by gangliosides. Sci STKE, 2002. 2002(160): p. re15.
34.Park, E.I., Y. Mi, C. Unverzagt, H.J. Gabius, and J.U. Baenziger, The asialoglycoprotein receptor clears glycoconjugates terminating with sialic acid alpha 2,6GalNAc. Proc Natl Acad Sci U S A, 2005. 102(47): p. 17125-9.
35.Lowe, J.B., Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr Opin Cell Biol, 2003. 15(5): p. 531-8.
36.Partridge, E.A., C. Le Roy, G.M. Di Guglielmo, J. Pawling, P. Cheung, M. Granovsky, I.R. Nabi, J.L. Wrana, and J.W. Dennis, Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science, 2004. 306(5693): p. 120-4.
37.Kolesnick, R., The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest, 2002. 110(1): p. 3-8.
38.Muse, E.D., H. Jurevics, A.D. Toews, G.K. Matsushima, and P. Morell, Parameters related to lipid metabolism as markers of myelination in mouse brain. J Neurochem, 2001. 76(1): p. 77-86.
39.Holleran, W.M., Y. Takagi, G.K. Menon, G. Legler, K.R. Feingold, and P.M. Elias, Processing of epidermal glucosylceramides is required for optimal mammalian cutaneous permeability barrier function. J Clin Invest, 1993. 91(4): p. 1656-64.
40.Togayachi, A., T. Akashima, R. Ookubo, T. Kudo, S. Nishihara, H. Iwasaki, A. Natsume, H. Mio, J. Inokuchi, T. Irimura, K. Sasaki, and H. Narimatsu, Molecular cloning and characterization of UDP-GlcNAc:lactosylceramide beta 1,3-N-acetylglucosaminyltransferase (beta 3Gn-T5), an essential enzyme for the expression of HNK-1 and Lewis X epitopes on glycolipids. J Biol Chem, 2001. 276(25): p. 22032-40.
41.Henion, T.R., D. Zhou, D.P. Wolfer, F.B. Jungalwala, and T. Hennet, Cloning of a mouse beta 1,3 N-acetylglucosaminyltransferase GlcNAc(beta 1,3)Gal(beta 1,4)Glc-ceramide synthase gene encoding the key regulator of lacto-series glycolipid biosynthesis. J Biol Chem, 2001. 276(32): p. 30261-9.
42.Hakomori, S. and Y. Igarashi, Gangliosides and glycosphingolipids as modulators of cell growth, adhesion, and transmembrane signaling. Adv Lipid Res, 1993. 25: p. 147-62.
43.Chester, M.A., IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature of glycolipids--recommendations 1997. Eur J Biochem, 1998. 257(2): p. 293-8.
44.Stryer, L., Biochemistry1975, San Francisco: W. H. Freeman. xii, 877 p.
45.Stults, C.L. and B.A. Macher, Beta 1-3-N-acetylglucosaminyltransferase in human leukocytes: properties and role in regulating neolacto glycosphingolipid biosynthesis. Arch Biochem Biophys, 1993. 303(1): p. 125-33.
46.Kundu, S.K., A. Suzuki, B. Sabo, J. McCreary, E. Niver, R. Harman, and D.M. Marcus, Erythrocyte glycosphingolipids of four siblings with the rare blood group p phenotype and their parents. J Immunogenet, 1981. 8(5): p. 357-65.
47.Keusch, J.J., S.M. Manzella, K.A. Nyame, R.D. Cummings, and J.U. Baenziger, Cloning of Gb3 synthase, the key enzyme in globo-series glycosphingolipid synthesis, predicts a family of alpha 1, 4-glycosyltransferases conserved in plants, insects, and mammals. J Biol Chem, 2000. 275(33): p. 25315-21.
48.Marcus, D.M., M. Naiki, and S.K. Kundu, Abnormalities in the glycosphingolipid content of human Pk and p erythrocytes. Proc Natl Acad Sci U S A, 1976. 73(9): p. 3263-7.
49.Suchanowska, A., R. Kaczmarek, M. Duk, J. Lukasiewicz, D. Smolarek, E. Majorczyk, E. Jaskiewicz, A. Laskowska, K. Wasniowska, M. Grodecka, E. Lisowska, and M. Czerwinski, A single point mutation in the gene encoding Gb3/CD77 synthase causes a rare inherited polyagglutination syndrome. J Biol Chem, 2012. 287(45): p. 38220-30.
50.Okajima, T., Y. Nakamura, M. Uchikawa, D.B. Haslam, S.I. Numata, K. Furukawa, and T. Urano, Expression cloning of human globoside synthase cDNAs. Identification of beta 3Gal-T3 as UDP-N-acetylgalactosamine:globotriaosylceramide beta 1,3-N-acetylgalactosaminyltransferase. J Biol Chem, 2000. 275(51): p. 40498-503.
51.Mangeney, M., Y. Richard, D. Coulaud, T. Tursz, and J. Wiels, CD77: an antigen of germinal center B cells entering apoptosis. Eur J Immunol, 1991. 21(5): p. 1131-40.
52.Sandvig, K., Shiga toxins. Toxicon, 2001. 39(11): p. 1629-35.
53.Thomson, J.A., J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, and J.M. Jones, Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
54.Kannagi, R., N.A. Cochran, F. Ishigami, S. Hakomori, P.W. Andrews, B.B. Knowles, and D. Solter, Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J, 1983. 2(12): p. 2355-61.
55.Reubinoff, B.E., M.F. Pera, C.Y. Fong, A. Trounson, and A. Bongso, Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol, 2000. 18(4): p. 399-404.
56.Clausen, H., K. Watanabe, R. Kannagi, S.B. Levery, E. Nudelman, Y. Arao-Tomono, and S. Hakomori, Blood group A glycolipid (Ax) with globo-series structure which is specific for blood group A1 erythrocytes: one of the chemical bases for A1 and A2 distinction. Biochem Biophys Res Commun, 1984. 124(2): p. 523-9.
57.Hakomori, S., Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A, 2002. 99(16): p. 10231-3.
58.Meezan, E., H.C. Wu, P.H. Black, and P.W. Robbins, Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by sephadex chromatography. Biochemistry, 1969. 8(6): p. 2518-24.
59.Saussez, S., H. Marchant, N. Nagy, C. Decaestecker, S. Hassid, A. Jortay, M.P. Schuring, H.J. Gabius, A. Danguy, I. Salmon, and R. Kiss, Quantitative glycohistochemistry defines new prognostic markers for cancers of the oral cavity. Cancer, 1998. 82(2): p. 252-60.
60.Adamczyk, B., T. Tharmalingam, and P.M. Rudd, Glycans as cancer biomarkers. Biochim Biophys Acta, 2012. 1820(9): p. 1347-53.
61.Lau, K.S. and J.W. Dennis, N-Glycans in cancer progression. Glycobiology, 2008. 18(10): p. 750-60.
62.Dennis, J.W., S. Laferte, C. Waghorne, M.L. Breitman, and R.S. Kerbel, Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science, 1987. 236(4801): p. 582-5.
63.van Beek, W.P., L.A. Smets, and P. Emmelot, Increased sialic acid density in surface glycoprotein of transformed and malignant cells--a general phenomenon? Cancer Res, 1973. 33(11): p. 2913-22.
64.Sell, S., Cancer-associated carbohydrates identified by monoclonal antibodies. Hum Pathol, 1990. 21(10): p. 1003-19.
65.Hakomori, S. and Y. Zhang, Glycosphingolipid antigens and cancer therapy. Chem Biol, 1997. 4(2): p. 97-104.
66.Taylor-Papadimitriou, J. and A.A. Epenetos, Exploiting altered glycosylation patterns in cancer: progress and challenges in diagnosis and therapy. Trends Biotechnol, 1994. 12(6): p. 227-33.
67.Hollingsworth, M.A. and B.J. Swanson, Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer, 2004. 4(1): p. 45-60.
68.Hakomori, S., Traveling for the glycosphingolipid path. Glycoconj J, 2000. 17(7-9): p. 627-47.
69.Girnita, L., M. Wang, Y. Xie, G. Nilsson, A. Dricu, J. Wejde, and O. Larsson, Inhibition of N-linked glycosylation down-regulates insulin-like growth factor-1 receptor at the cell surface and kills Ewing''s sarcoma cells: therapeutic implications. Anticancer Drug Des, 2000. 15(1): p. 67-72.
70.Bogenrieder, T. and M. Herlyn, Axis of evil: molecular mechanisms of cancer metastasis. Oncogene, 2003. 22(42): p. 6524-36.
71.Seidenfaden, R., A. Krauter, F. Schertzinger, R. Gerardy-Schahn, and H. Hildebrandt, Polysialic acid directs tumor cell growth by controlling heterophilic neural cell adhesion molecule interactions. Mol Cell Biol, 2003. 23(16): p. 5908-18.
72.Iozzo, R.V. and J.D. San Antonio, Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest, 2001. 108(3): p. 349-55.
73.Kleeff, J., T. Ishiwata, A. Kumbasar, H. Friess, M.W. Buchler, A.D. Lander, and M. Korc, The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest, 1998. 102(9): p. 1662-73.
74.Wolfl, M., W.Y. Batten, C. Posovszky, H. Bernhard, and F. Berthold, Gangliosides inhibit the development from monocytes to dendritic cells. Clin Exp Immunol, 2002. 130(3): p. 441-8.
75.Caldwell, S., A. Heitger, W. Shen, Y. Liu, B. Taylor, and S. Ladisch, Mechanisms of ganglioside inhibition of APC function. J Immunol, 2003. 171(4): p. 1676-83.
76.Crespo, F.A., X. Sun, J.G. Cripps, and R. Fernandez-Botran, The immunoregulatory effects of gangliosides involve immune deviation favoring type-2 T cell responses. J Leukoc Biol, 2006. 79(3): p. 586-95.
77.Fredman, P., H. von Holst, V.P. Collins, A. Ammar, B. Dellheden, B. Wahren, L. Granholm, and L. Svennerholm, Potential ganglioside antigens associated with human gliomas. Neurol Res, 1986. 8(2): p. 123-6.
78.Jennemann, R., A. Rodden, B.L. Bauer, H.D. Mennel, and H. Wiegandt, Glycosphingolipids of human gliomas. Cancer Res, 1990. 50(23): p. 7444-9.
79.Traylor, T.D. and E.L. Hogan, Gangliosides of human cerebral astrocytomas. J Neurochem, 1980. 34(1): p. 126-31.
80.Ravindranath, M.H. and R.F. Irie, Gangliosides as antigens of human melanoma. Cancer Treat Res, 1988. 43: p. 17-43.
81.Vanier, M.T., M. Holm, J.E. Mansson, and L. Svennerholm, The distribution of lipids in the human nervous system--V. Gangliosides and allied neutral glycolipids of infant brain. J Neurochem, 1973. 21(6): p. 1375-84.
82.Ando, S. and T. Yamakawa, Separation of polar glycolipids from human red blood cells with special reference to blood group-A activity. J Biochem, 1973. 73(2): p. 387-96.
83.Pukel, C.S., K.O. Lloyd, L.R. Travassos, W.G. Dippold, H.F. Oettgen, and L.J. Old, GD3, a prominent ganglioside of human melanoma. Detection and characterisation by mouse monoclonal antibody. J Exp Med, 1982. 155(4): p. 1133-47.
84.Siddiqui, B., J. Buehler, M.W. DeGregorio, and B.A. Macher, Differential expression of ganglioside GD3 by human leukocytes and leukemia cells. Cancer Res, 1984. 44(11): p. 5262-5.
85.Fuentes, R., R. Allman, and M.D. Mason, Ganglioside expression in lung cancer cell lines. Lung Cancer, 1997. 18(1): p. 21-33.
86.Cazet, A., S. Groux-Degroote, B. Teylaert, K.M. Kwon, S. Lehoux, C. Slomianny, C.H. Kim, X. Le Bourhis, and P. Delannoy, GD3 synthase overexpression enhances proliferation and migration of MDA-MB-231 breast cancer cells. Biol Chem, 2009. 390(7): p. 601-9.
87.Fredman, P., H. von Holst, V.P. Collins, B. Dellheden, and L. Svennerholm, Expression of gangliosides GD3 and 3''-isoLM1 in autopsy brains from patients with malignant tumors. J Neurochem, 1993. 60(1): p. 99-105.
88.Berra, B., S.M. Gaini, and L. Riboni, Correlation between ganglioside distribution and histological grading of human astrocytomas. Int J Cancer, 1985. 36(3): p. 363-6.
89.Nakamura, O., E. Ishihara, M. Iwamori, T. Nagai, M. Matsutani, K. Nomura, and K. Takakura, [Lipid composition of human malignant brain tumors]. No To Shinkei, 1987. 39(3): p. 221-6.
90.Yu, A.L., A.L. Gilman, M.F. Ozkaynak, W.B. London, S.G. Kreissman, H.X. Chen, M. Smith, B. Anderson, J.G. Villablanca, K.K. Matthay, H. Shimada, S.A. Grupp, R. Seeger, C.P. Reynolds, A. Buxton, R.A. Reisfeld, S.D. Gillies, S.L. Cohn, J.M. Maris, and P.M. Sondel, Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med, 2010. 363(14): p. 1324-34.
91.Cahan, L.D., R.F. Irie, R. Singh, A. Cassidenti, and J.C. Paulson, Identification of a human neuroectodermal tumor antigen (OFA-I-2) as ganglioside GD2. Proc Natl Acad Sci U S A, 1982. 79(24): p. 7629-33.
92.Cheresh, D.A., J. Rosenberg, K. Mujoo, L. Hirschowitz, and R.A. Reisfeld, Biosynthesis and expression of the disialoganglioside GD2, a relevant target antigen on small cell lung carcinoma for monoclonal antibody-mediated cytolysis. Cancer Res, 1986. 46(10): p. 5112-8.
93.Mansson, J.E., P. Fredman, D.D. Bigner, K. Molin, B. Rosengren, H.S. Friedman, and L. Svennerholm, Characterization of new gangliosides of the lactotetraose series in murine xenografts of a human glioma cell line. FEBS Lett, 1986. 201(1): p. 109-13.
94.Fredman, P., H. von Holst, V.P. Collins, L. Granholm, and L. Svennerholm, Sialyllactotetraosylceramide, a ganglioside marker for human malignant gliomas. J Neurochem, 1988. 50(3): p. 912-9.
95.Wikstrand, C.J., P. Fredman, L. Svennerholm, P.A. Humphrey, S.H. Bigner, and D.D. Bigner, Monoclonal antibodies to malignant human gliomas. Mol Chem Neuropathol, 1992. 17(2): p. 137-46.
96.Svennerholm, L., K. Bostrom, P. Fredman, J.E. Mansson, B. Rosengren, and B.M. Rynmark, Human brain gangliosides: developmental changes from early fetal stage to advanced age. Biochim Biophys Acta, 1989. 1005(2): p. 109-17.
97.Kato, Y., C.T. Kuan, J. Chang, M.K. Kaneko, J. Ayriss, H. Piao, V. Chandramohan, C. Pegram, R.E. McLendon, P. Fredman, J.E. Mansson, and D.D. Bigner, GMab-1, a high-affinity anti-3''-isoLM1/3'',6''-isoLD1 IgG monoclonal antibody, raised in lacto-series ganglioside-defective knockout mice. Biochem Biophys Res Commun, 2010. 391(1): p. 750-5.
98.Uhm, J.H., K.V. Ballman, W. Wu, C. Giannini, J.C. Krauss, J.C. Buckner, C.D. James, B.W. Scheithauer, R.J. Behrens, P.J. Flynn, P.L. Schaefer, S.R. Dakhill, and K.A. Jaeckle, Phase II evaluation of gefitinib in patients with newly diagnosed Grade 4 astrocytoma: Mayo/North Central Cancer Treatment Group Study N0074. Int J Radiat Oncol Biol Phys, 2011. 80(2): p. 347-53.
99.Peereboom, D.M., D.R. Shepard, M.S. Ahluwalia, C.J. Brewer, N. Agarwal, G.H. Stevens, J.H. Suh, S.A. Toms, M.A. Vogelbaum, R.J. Weil, P. Elson, and G.H. Barnett, Phase II trial of erlotinib with temozolomide and radiation in patients with newly diagnosed glioblastoma multiforme. J Neurooncol, 2010. 98(1): p. 93-9.
100.Prados, M.D., S.M. Chang, N. Butowski, R. DeBoer, R. Parvataneni, H. Carliner, P. Kabuubi, J. Ayers-Ringler, J. Rabbitt, M. Page, A. Fedoroff, P.K. Sneed, M.S. Berger, M.W. McDermott, A.T. Parsa, S. Vandenberg, C.D. James, K.R. Lamborn, D. Stokoe, and D.A. Haas-Kogan, Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J Clin Oncol, 2009. 27(4): p. 579-84.
101.Ranza, E., G. Mazzini, A. Facoetti, and R. Nano, In-vitro effects of the tyrosine kinase inhibitor imatinib on glioblastoma cell proliferation. J Neurooncol, 2010. 96(3): p. 349-57.
102.Kubota, N., S. Okada, T. Inada, K. Ohnishi, and T. Ohnishi, Wortmannin sensitizes human glioblastoma cell lines carrying mutant and wild type TP53 gene to radiation. Cancer Lett, 2000. 161(2): p. 141-7.
103.Stefanik, D.F., W.K. Fellows, L.R. Rizkalla, W.M. Rizkalla, P.P. Stefanik, A.B. Deleo, and W.C. Welch, Monoclonal antibodies to vascular endothelial growth factor (VEGF) and the VEGF receptor, FLT-1, inhibit the growth of C6 glioma in a mouse xenograft. J Neurooncol, 2001. 55(2): p. 91-100.
104.Bao, S., Q. Wu, S. Sathornsumetee, Y. Hao, Z. Li, A.B. Hjelmeland, Q. Shi, R.E. McLendon, D.D. Bigner, and J.N. Rich, Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res, 2006. 66(16): p. 7843-8.
105.Vredenburgh, J.J., A. Desjardins, J.P. Kirkpatrick, D.A. Reardon, K.B. Peters, J.E. Herndon, 2nd, J. Marcello, L. Bailey, S. Threatt, J. Sampson, A. Friedman, and H.S. Friedman, Addition of bevacizumab to standard radiation therapy and daily temozolomide is associated with minimal toxicity in newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys, 2012. 82(1): p. 58-66.
106.Mishima, K., T.G. Johns, R.B. Luwor, A.M. Scott, E. Stockert, A.A. Jungbluth, X.D. Ji, P. Suvarna, J.R. Voland, L.J. Old, H.J. Huang, and W.K. Cavenee, Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor. Cancer Res, 2001. 61(14): p. 5349-54.
107.Carter, P., Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer, 2001. 1(2): p. 118-29.
108.Siwak, D.R., A.M. Tari, and G. Lopez-Berestein, The potential of drug-carrying immunoliposomes as anticancer agents. Commentary re: J. W. Park et al., Anti-HER2 immunoliposomes: enhanced efficacy due to targeted delivery. Clin. Cancer Res., 8: 1172-1181, 2002. Clin Cancer Res, 2002. 8(4): p. 955-6.
109.Alvero, A.B., R. Chen, H.H. Fu, M. Montagna, P.E. Schwartz, T. Rutherford, D.A. Silasi, K.D. Steffensen, M. Waldstrom, I. Visintin, and G. Mor, Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle, 2009. 8(1): p. 158-66.
110.Matsui, W., Q. Wang, J.P. Barber, S. Brennan, B.D. Smith, I. Borrello, I. McNiece, L. Lin, R.F. Ambinder, C. Peacock, D.N. Watkins, C.A. Huff, and R.J. Jones, Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res, 2008. 68(1): p. 190-7.
111.Heppner, G.H. and B.E. Miller, Tumor heterogeneity: biological implications and therapeutic consequences. Cancer Metastasis Rev, 1983. 2(1): p. 5-23.
112.Reya, T., S.J. Morrison, M.F. Clarke, and I.L. Weissman, Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-11.
113.Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-7.
114.Al-Hajj, M., M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, and M.F. Clarke, Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3983-8.
115.Castor, A., L. Nilsson, I. Astrand-Grundstrom, M. Buitenhuis, C. Ramirez, K. Anderson, B. Strombeck, S. Garwicz, A.N. Bekassy, K. Schmiegelow, B. Lausen, P. Hokland, S. Lehmann, G. Juliusson, B. Johansson, and S.E. Jacobsen, Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med, 2005. 11(6): p. 630-7.
116.Cox, C.V., R.S. Evely, A. Oakhill, D.H. Pamphilon, N.J. Goulden, and A. Blair, Characterization of acute lymphoblastic leukemia progenitor cells. Blood, 2004. 104(9): p. 2919-25.
117.Eramo, A., F. Lotti, G. Sette, E. Pilozzi, M. Biffoni, A. Di Virgilio, C. Conticello, L. Ruco, C. Peschle, and R. De Maria, Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ, 2008. 15(3): p. 504-14.
118.Fang, D., T.K. Nguyen, K. Leishear, R. Finko, A.N. Kulp, S. Hotz, P.A. Van Belle, X. Xu, D.E. Elder, and M. Herlyn, A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res, 2005. 65(20): p. 9328-37.
119.Galli, R., E. Binda, U. Orfanelli, B. Cipelletti, A. Gritti, S. De Vitis, R. Fiocco, C. Foroni, F. Dimeco, and A. Vescovi, Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res, 2004. 64(19): p. 7011-21.
120.O''Brien, C.A., A. Pollett, S. Gallinger, and J.E. Dick, A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007. 445(7123): p. 106-10.
121.Ricci-Vitiani, L., D.G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, and R. De Maria, Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111-5.
122.Singh, S.K., C. Hawkins, I.D. Clarke, J.A. Squire, J. Bayani, T. Hide, R.M. Henkelman, M.D. Cusimano, and P.B. Dirks, Identification of human brain tumour initiating cells. Nature, 2004. 432(7015): p. 396-401.
123.Ignatova, T.N., V.G. Kukekov, E.D. Laywell, O.N. Suslov, F.D. Vrionis, and D.A. Steindler, Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia, 2002. 39(3): p. 193-206.
124.Lathia, J.D., J. Gallagher, J.M. Heddleston, J. Wang, C.E. Eyler, J. Macswords, Q. Wu, A. Vasanji, R.E. McLendon, A.B. Hjelmeland, and J.N. Rich, Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell, 2010. 6(5): p. 421-32.
125.Ogden, A.T., A.E. Waziri, R.A. Lochhead, D. Fusco, K. Lopez, J.A. Ellis, J. Kang, M. Assanah, G.M. McKhann, M.B. Sisti, P.C. McCormick, P. Canoll, and J.N. Bruce, Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. Neurosurgery, 2008. 62(2): p. 505-14; discussion 514-5.
126.Son, M.J., K. Woolard, D.H. Nam, J. Lee, and H.A. Fine, SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell, 2009. 4(5): p. 440-52.
127.Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001. 25(4): p. 402-8.
128.Kannagi, R., S.B. Levery, F. Ishigami, S. Hakomori, L.H. Shevinsky, B.B. Knowles, and D. Solter, New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. J Biol Chem, 1983. 258(14): p. 8934-42.
129.Wang, C.C., Y.L. Huang, C.T. Ren, C.W. Lin, J.T. Hung, J.C. Yu, A.L. Yu, C.Y. Wu, and C.H. Wong, Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer. Proc Natl Acad Sci U S A, 2008. 105(33): p. 11661-6.
130.Zarei, M., J. Muthing, J. Peter-Katalinic, and L. Bindila, Separation and identification of GM1b pathway Neu5Ac- and Neu5Gc gangliosides by on-line nanoHPLC-QToF MS and tandem MS: toward glycolipidomics screening of animal cell lines. Glycobiology, 2010. 20(1): p. 118-26.
131.Saito, S., S. Orikasa, M. Satoh, C. Ohyama, A. Ito, and T. Takahashi, Expression of globo-series gangliosides in human renal cell carcinoma. Jpn J Cancer Res, 1997. 88(7): p. 652-9.
132.Gottschling, S., K. Jensen, A. Warth, F.J. Herth, M. Thomas, P.A. Schnabel, and E. Herpel, Stage-specific embryonic antigen-4 is expressed in basaloid lung cancer and associated with poor prognosis. Eur Respir J, 2013. 41(3): p. 656-63.
133.Ye, F., Y. Li, Y. Hu, C. Zhou, and H. Chen, Stage-specific embryonic antigen 4 expression in epithelial ovarian carcinoma. Int J Gynecol Cancer, 2010. 20(6): p. 958-64.
134.Huang, Y.L., J.T. Hung, S.K. Cheung, H.Y. Lee, K.C. Chu, S.T. Li, Y.C. Lin, C.T. Ren, T.J. Cheng, T.L. Hsu, A.L. Yu, C.Y. Wu, and C.H. Wong, Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proc Natl Acad Sci U S A, 2013. 110(7): p. 2517-22.
135.Noto, Z., T. Yoshida, M. Okabe, C. Koike, M. Fathy, H. Tsuno, K. Tomihara, N. Arai, M. Noguchi, and T. Nikaido, CD44 and SSEA-4 positive cells in an oral cancer cell line HSC-4 possess cancer stem-like cell characteristics. Oral Oncol, 2013.
136.Yuan, X., J. Curtin, Y. Xiong, G. Liu, S. Waschsmann-Hogiu, D.L. Farkas, K.L. Black, and J.S. Yu, Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene, 2004. 23(58): p. 9392-400.
137.Kempermann, G., Adult neurogenesis : stem cells and neuronal development in the adult brain2006, New York: Oxford University Press. x, 426 p.
138.Michalczyk, K. and M. Ziman, Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol, 2005. 20(2): p. 665-71.
139.Chang, W.W., C.H. Lee, P. Lee, J. Lin, C.W. Hsu, J.T. Hung, J.J. Lin, J.C. Yu, L.E. Shao, J. Yu, C.H. Wong, and A.L. Yu, Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc Natl Acad Sci U S A, 2008. 105(33): p. 11667-72.
140.Brimble, S.N., E.S. Sherrer, E.W. Uhl, E. Wang, S. Kelly, A.H. Merrill, Jr., A.J. Robins, and T.C. Schulz, The cell surface glycosphingolipids SSEA-3 and SSEA-4 are not essential for human ESC pluripotency. Stem Cells, 2007. 25(1): p. 54-62.
141.Van Slambrouck, S. and W.F. Steelant, Clustering of monosialyl-Gb5 initiates downstream signalling events leading to invasion of MCF-7 breast cancer cells. Biochem J, 2007. 401(3): p. 689-99.
142.Hung, T.C., C.W. Lin, T.L. Hsu, C.Y. Wu, and C.H. Wong, Investigation of SSEA-4 binding protein in breast cancer cells. J Am Chem Soc, 2013. 135(16): p. 5934-7.
143.Saito, S., H. Aoki, A. Ito, S. Ueno, T. Wada, K. Mitsuzuka, M. Satoh, Y. Arai, and T. Miyagi, Human alpha2,3-sialyltransferase (ST3Gal II) is a stage-specific embryonic antigen-4 synthase. J Biol Chem, 2003. 278(29): p. 26474-9.
144.Kudo, T., Y. Ikehara, A. Togayachi, K. Morozumi, M. Watanabe, M. Nakamura, S. Nishihara, and H. Narimatsu, Up-regulation of a set of glycosyltransferase genes in human colorectal cancer. Lab Invest, 1998. 78(7): p. 797-811.
145.Kundu, S.K., B.E. Samuelsson, I. Pascher, and D.M. Marcus, New gangliosides from human erythrocytes. J Biol Chem, 1983. 258(22): p. 13857-66.
146.Visvader, J.E. and G.J. Lindeman, Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer, 2008. 8(10): p. 755-68.
147.Haraguchi, M., S. Yamashiro, A. Yamamoto, K. Furukawa, K. Takamiya, K.O. Lloyd, and H. Shiku, Isolation of GD3 synthase gene by expression cloning of GM3 alpha-2,8-sialyltransferase cDNA using anti-GD2 monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 1994. 91(22): p. 10455-9.
148.Yanagisawa, M., T. Taga, K. Nakamura, T. Ariga, and R.K. Yu, Characterization of glycoconjugate antigens in mouse embryonic neural precursor cells. Journal of neurochemistry, 2005. 95(5): p. 1311-20.
149.Battula, V.L., Y. Shi, K.W. Evans, R.Y. Wang, E.L. Spaeth, R.O. Jacamo, R. Guerra, A.A. Sahin, F.C. Marini, G. Hortobagyi, S.A. Mani, and M. Andreeff, Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest, 2012. 122(6): p. 2066-78.
150.Svennerholm, L., K. Bostrom, P. Fredman, B. Jungbjer, J.E. Mansson, and B.M. Rynmark, Membrane lipids of human peripheral nerve and spinal cord. Biochim Biophys Acta, 1992. 1128(1): p. 1-7.
151.Green, M.R., Targeting targeted therapy. N Engl J Med, 2004. 350(21): p. 2191-3.
152.Wikstrand, C.J., I. Cokgor, J.H. Sampson, and D.D. Bigner, Monoclonal antibody therapy of human gliomas: current status and future approaches. Cancer Metastasis Rev, 1999. 18(4): p. 451-64.
153.Durrant, L.G., P. Noble, and I. Spendlove, Immunology in the clinic review series; focus on cancer: glycolipids as targets for tumour immunotherapy. Clin Exp Immunol, 2012. 167(2): p. 206-15.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊