跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/12 00:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳典儒
研究生(外文):Tien-Ju Wu
論文名稱:道路廢能儲存與發電系統之監控研究
論文名稱(外文):Study of the Monitoring Control for the Roadway System of Waste Energy Storage and Electric Generation
指導教授:丁振卿洪祖全
口試委員:湯華興楊台發
口試日期:2010-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:93
中文關鍵詞:宇春CCT實驗室道路發電PZT壓力感測裝置LabVIEW
外文關鍵詞:Yu-ChunCCT LaboratoryRoadway electric generationPZTpressure sensorLabVIEW
相關次數:
  • 被引用被引用:1
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文在開發道路廢能儲存與發電之監控裝置,道路廢能儲存與發電系統是一種利用車重來壓縮油壓缸以收集道路廢能進行發電之裝置。此外,本論文更自行開發監控所需的感測元件,研究以壓電材料(PZT)及開發利用光遮斷感測元件結合類比式壓力表之壓力檢測裝置,用於檢測道路廢能發電裝置之使用狀態。實驗中所使用的壓電材料(PZT)為鋯鈦酸鉛壓電陶瓷材質,再分別使用外直徑3.1、4.7、6.3、8.0mm的紅銅管製作皮托管(Pitot Tube),作為量測流體壓力之感測元件,抓取流體壓力以辨識受壓塊之狀態。量測時,以流體衝擊不同管徑之皮托管內壓電材料,再使用LabView軟體配合資料庫(MySQL)進行電壓值記錄並分析。結果顯示,直徑6.3mm管在檢測顯示上比較好,但訊號起伏上不夠穩定。另外,以光遮斷感測元件搭配類比式壓力表,雖只能做單一壓力值的檢測,卻能穩定且精確的檢測出道路廢能發電裝置之損壞程度。本論文所研發針對道路廢能儲存與發電系統之遠端監控裝置乃採用NI美商國家儀器的產品Real Time Compact RIO與多張擷取卡配合軟體LabView進行監控系統研究開發,並透過LabView內部之伺服器進行遠端監控。其所監測部分有發電機發電功率、道路廢能發電裝置損壞監控、車次計數、位能儲能槽能量檢測及多組發電機自動切換設計等。本論文還特別對道路廢能發電裝置之材料進行研究,探討材料成本、使用壽命、抗壓程度、加工成本與加工難易度等,探討材料主要有金屬材料與非金屬材料兩大類,而金屬材料主要為不鏽鋼、鐵、青銅與鋁鎂合金;非金屬材料主要為AB膠、混泥土與塑鋼土,實驗結果與分析顯示,混泥土在目前材料特性與經濟成本上都具有一定發展性。

This paper aims to develop the monitoring control system for the roadway system of waste energy storage and electric generation which captures energy while vehicles run over its pressure pieces. Moreover, this paper also developed the required sensors using piezoelectric (PZT) material and photo interrupter integrated with analog pressure gauge for detecting the system''s working state. The applied PZT is lead zirconate titanate which is integrated with different diameters of copper pipe 3.1, 4.7, 6.3, 8.0mm to build the Pitot tube. The home-made Pitot tube will capture the flow pressure and determine the working state of the pressure pieces. The flow pushed the PZT sensor of Pitot tube with different diameters during measurements and the output voltage is recorded by the LabVIEW program integrated with database of MySQL. The results show that Pitot tube with diameter of 6.3mm received better information, but it is notstable enough. Furthermore, the photo interrupter gauge can not only detect one voltage, but it can also capture stable and precise value to the pressure pieces. The applied monitoring control system is developed by using the National Instrument (NI) Real Time Compact RIO and more other capture cards integrated with LabVIEW software. The remote monitoring control is through the server of LabVIEW. The monitored things are output power of the electric generator, working state of the system, vehicles number recoraling, potential energy storage and automatic changing of multiple electric generators, etc.. This paper especially investigated material of the pressure piece including material cost, life time, resist and manufacturing feasibility. The investigated maerials consist of metal and non-metal materials, where the metal materials are stainless steel, iron, bronze, and aluminum-magnesium alloy; the non-metal materials are AB glue, cement, and steel soil. The results show that cement has the best feasibility in the consideration of
material property and cost.


摘要---------------------------------------------------i
ABSTRACT--------------------------------------------- iii
誌謝--------------------------------------------------iv
目錄--------------------------------------------------vii
表目錄----------------------------------------------- viii
圖目錄----------------------------------------------- xii
第一章 緒論---------------===--------------------------1
1.1 研究背景-------------------------------------------1
1.2 文獻回顧-------------------------------------------2
1.3 研究動機及目的-------------------------------------5
第二章 基礎理論----------------------------------------6
2.1 道路廢能發電系統-----------------------------------6
2.1.1 壓縮時間-----------------------------------------6
2.1.2 活塞衝程-----------------------------------------7
2.1.3 壓縮作功-----------------------------------------8
2.1.4 管流壓力-----------------------------------------8
2.2 壓電效應與原理-------------------------------------9
2.2.1 PZT基礎理論-------------------------------------10
2.2.2 PVDF基礎理論------------------------------------11
2.3 遠端監控之理論概念--------------------------------11
2.4 資料擷取之概念與原理------------------------------13
2.5 LabVIEW軟體介紹-----------------------------------13
2.5.1 人機介面-------------------------------------14
2.5.2 程式介面-------------------------------------14
2.5.3 圖示與連結器---------------------------------15
2.5.4 布林代數-------------------------------------16
2.5.5 區域變數與廣域變數---------------------------16
2.6 資料庫儲存概念------------------------------------17
2.6.1 主從式資料庫系統-----------------------------18
2.6.2 平行資料庫系統-------------------------------19
2.6.3分散式資料庫系統------------------------------20
第三章 實驗架設---------------------------------------21
3.1道路廢能發電系統效率測試---------------------------21
3.2 材料抗壓實驗測試----------------------------------24
3.3 受壓快之壽命減測----------------------------------27
3.3.1 蜂鳴片壓電材料------------------------------27
3.3.1.1 軟體系統校正架設------------------------27
3.3.1.2 蜂鳴片受力面積與全壓力測試分析----------30
3.3.2 光遮斷感測元件結合類比式壓力表--------------33
3.4 道路廢能發電系統之遠端監控------------------------35
3.4.1 位能槽能量檢測與多組發電機切換設計----------35
3.4.2 監控發電機之發電功率------------------------36
3.4.3 發電機轉速校正架設--------------------------40
3.4.4 受壓塊損壞監控與車流量檢測架設--------------40
3.4.5 車速擷取系統校正----------------------------45
第四章 結果與討論-------------------------------------47
4.1 道路廢能發電系統效率分----------------------------47
4.2 受壓塊材料之硬度測試------------------------------50
4.2.1 金屬受壓塊之抗壓測試分析--------------------50
4.2.2 非金屬材料之應力分析------------------------57
4.2.3. 材料總分析---------------------------------64
4.3 製作壓力檢測監控裝置------------------------------65
4.3.1 蜂鳴片壓電材料------------------------------65
4.3.1.1 軟體設計與校正------------------------65
4.3.1.2 自製皮托管測試與分析------------------67
4.3.2 光遮斷感測元件結合類比式壓力表測試分析------71
4.4 道路廢能儲存與發電系統之遠端監控------------------73
4.4.1 位能槽能量檢測與多組發電機切換設計測試結果--73
4.4.2 發電機之發電功率監測------------------------73
4.4.3 轉速擷取校正分析----------------------------75
4.4.4 受壓塊之工作狀態檢測------------------------77
4.4.5 車速擷取系統校正----------------------------80
第五章 結論-------------------------------------------85
第六章 未來展望---------------------------------------86
參考文獻----------------------------------------------92


1. K. Akira, ”A New-Generation Hybrid Electric Vehicle and
Its Supporting Power Semiconductor Devices,”
Proceedings of 2004 International Symposium on Power
Semiconductor Devices & ICs, 2004, pp.23-29.

2. R. Allan, ”Setting the standard for hybrid cars,”
Eletronic Design, vol. 53, 2008, pp. 41-48.

3. M. Loreto and M. Francesc, ”Appropriate Charge Control
of the Storage Capacitor in a Piezoelectric Energy
Harvesting Device for Discontinuous Load Operation,”
Sensors and Actuators A, vol. 132, 2006, pp. 302-310.

4. G. Poulin, E. Sarraute and F. Costa, ”Genertion of
Electrical Energy for Portable Devices Comparative Study
of an Electromagnetic and a Piezoelectric System,”
Sensors and Actuators A, vol. 116, 2004, pp. 461-471.

5. E. Minazara, D. Vasic, F. Costa and G. Poulin, ”
Piezoelectric Diaphragm for Vibration Energy
Harvesting,” Ultrasonics, vol. 44, 2006, pp. e699-e703.


6. A. Tom’s, V. Antonio and M. Jose’M, ”Thermoeconomic
Analysis of a Fuel Cell Hybrid Power System from the
Fuel Cell Experimental Data,” Energy, vol. 31, 2006,
pp. 1358-1370.

7. D. Halasz, K. Szendy and J. Lukacs, ”Improvement of
Thermo-Electric Generator Efficiency by Partial
Recuperation of Input Heat,” 7th World Energy Conf,
1969, pp. 281-288.

8. Z.H. Dughaish, ”Lead Telluride as a Thermoelectric
Material for Thermoelectric Power Generation,” Physica
B, vol. 322, 2002, pp. 205-223.

9. G. Negre, ”Expansion Chamber for a Compressed Air
Engine,” World Intellectual Property Organization,
I.A.N, 2002, PCT/FR2002/000778.

10. M. Lee and R. Castle, ”Electrical Power From Road
Seismic Energy. Patent Application Publication Moore,”
Pub, 2002, no. 2002/0159330 A1.

11. 美國政府汽車節能網,http://www.fueleconomy.gov/feg/atv.shtml

12. 聞新、張洪鉞、周露,控制系統的故障診斷和容錯控制,中國北京市:機械工業出版社,February,1998,第1-27頁。

13. ” NTT Develops Shoes That Power Gadgets,” Mark’s Technology News, Oct 17, 2008.

14. J.A. Paradiso, ”Systems for Human-Powered Mobile Computing,” Desing Automation Conference, vol. 43, 2006, pp. 645-650.

15. Powerleap, http://www.powerleap.net

16. Innowattech Company, http://www.innowattech.co.il

17. 音力株式會社,http://www.soundpower.co.jp

18. 周卓明、謝榮哲、許瑋祥,壓電發電裝置,經濟部智慧財產局,no. M33487。

19. 劉源宏,圖形監控應用於工廠電力系統之研究,碩士論文,國立台灣海洋大學機械與輪機工程學系,基隆市,2001。

20. K. Cai and X.Y. Liang, ”Development of Remote Monitoring Cardiac Patients System Based on GPRS,” Biomedical Engineering and Computer Science, 2010, pp. 1-4.

21. J. Choi, J.W. Park, J.H. Chung and B.G. Min, ”An Intelligent Remote Monitoring
System for Artificial Heart,” IEEE Transactions on Information Technology in
Biomedicine, vol. 9, 2006, pp. 564-573.

22. P.Y. Yin and M.V. Chilukuri, ”Remote Power Quality Monitoring and Analysis System Using LabVIEW Software,” International Instrumentation and Measurement Technology Conference, 2009, pp. 279-283.

23. X.H. Li, Z.F. Sun, T.S. Huang, K. Du, Q. Wang and Y.C. Wang, ”Embedded Wireless Network Control System: an Application of Remote Monitoring System for Greenhouse Environment,” Computational Engineering in Systems Applications, vol. 2, 2006, pp. 1719-1722.

24. 李祥,流體力學觀念剖析(下),台北市:鼎茂圖書,2006,第8.114-8.134頁。

25. 周卓明,壓電力學,台北市:全華科技圖書股份有限公司,2003,第1.8-1.10頁。
26. B. Zheng, C. Lu and H.Z. Huang, ”Topology Optimization of Piezoelectric Force Sensor,” Apperceiving Computing and Intelligence Analysis , 2008, pp. 132-136.

27. M.G. Schweyer, J.A. Hilton, J.E. Munson, J.C. Andle, J.M. Hammond and R.M. Lec, ”A Novel Monolithic Piezoelectric Sensor,” International Frequency Control Symposium, 1997, pp. 32-40.

28. S. Priya, ”Piezoelectric Angular Acceleration Sensor,” Ultrasonics, IEEE Symposium on , vol. 2, 2003, pp. 1346-1349.

29. S. Priya, ”Advances in energy harvesting using low profile piezoelectric transducers,” Journal of Electroceramics, vol. 19, 2007, pp. 167-184.

30. D. Koyama and K. Nakamura, ”Electric power generation using vibration of a polyurea piezoelectric thin film,” Ultrasonics Symposium, IEEE, 2008, pp. 938-941.


31. S.R. Platt, S. Farritor and H. Haider, ”On Low-Frequency Electric Power Generation With PZT Ceramics,” ASME Transactions On Mechatronics, IEEE, vol. 10, 2005, pp. 240-252.

32. 饒珮瑩,利用微機電技術及製作壓電式微型加速器,碩士論文,國立成功大學航空太空工程研究所,台南市,2003。

33. Y. Tomikawa and S. Okada, ”Piezoelectric angular acceleration sensor,” Ultrasonics, IEEE Symposium on , vol. 2, 2003, pp. 1346-1349.

34. O. Al-Hattamleh, J. Cho, R.F. Richards, D.F. Bahr and C.D. Richards, ”The Effect of Design and Process Parameters on Electromechanical Coupling for a Thin-Film PZT Membrane,” Journal of Microelectromechanical Systems, vol. 15, 2006, pp. 1715-1725.

35. 羅文濱,新型軟性壓電式觸覺感測器結構設計與製作,碩士論文,私立南台科技大學機械工程研究所,台南縣,2007。

36. F. Bauer, ”PVDF Shock Sensors: Applications to Polar Materials and High Explosives,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 47, 2000, pp. 1448-1454 .

37. E. Haeusler and V. Rech, ”Touch trigger probe with PVDF sensor,” 6th International Symposium on Electrets, 1988, pp. 657-661 .

38. X. Chen and A. Song, ”Tactile Detection System Using PVDF Sensor,” Intelligent Systems and Applications , 2009, pp. 1-3.

39. 鍾文仁,集束型設備之遠端性能監控與自動回報功能的探討,碩士論文,私立中原大學機械工程學系,桃園縣,2004。

40. 惠汝生,LabVIEW 8.X 圖控程式應用,台北市:全華科技圖書股份有限公司,2006,第1.1-4.76頁。

41. 陳瓊興,LabView 8.X與感測電路應用,台北市:台科大圖書股份有限公司,2008,第1.1-12.37頁。
42. 蕭子健、王智昱、儲昭偉,虛擬儀控程式設計LabView 8X,台北市:高立圖書有限公司,2007,第1.1-8.20頁。
43. C. Eisner and D. Fisman, ”Augmenting a Regular Expression-Based Temporal Logic with Local Variables,” Formal Methods in Computer-Aided Design, 2008, pp. 1-8.

44. I.A. Mason and C.L. Talcott, ”References, Local Variables and Operational Reasoning,” Logic in Computer Science, Proceedings of the Seventh Annual IEEE Symposium on, 1992, pp. 186-197.

45. VB線上教學,http://elearning.stut.edu.tw/teach/VB

46. 陳良弼、柯佳伶、沈錳坤、梁錫卿、李華富,資料庫系統理論與應用,台北縣:高立圖書有限公司,2003,第1-9頁。

47. D.W. Cheung, V.T. Ng, A.W. Fu and Y. Fu, ”Efficient Mining of Association Rules in Distributed Databases,” Knowledge and Data Engineering, IEEE Transactions on, vol. 8, 1996, pp. 911-922.
48. 三木工程股份有限公司,http://www.sambond.com.tw/

49. 彭源昌、陳弘毅,布林代數與其應用,台北市:徐氏基金會出版,1979,第1-42頁。

50. M.S. Vlad and V. Sgarciu, ”Distance Process Monitoring Using LabVIEW Environment,” Automation, Quality and Testing, Robotics, IEEE International Conference on, vol. 1, 2006, pp. 214-219.

51. A. Baccigalupi, C. De Capua and A. Liccardo, ”Overview on Development of Remote Teaching Laboratories: from LabVIEW to Web Services,” Instrumentation and Measurement Technology Conference, Proceedings of the IEEE, 2006, pp. 992-997.

52. Q. Tang, Z. Teng, S. Guo and Y. Wang, ”Design of Power Quality Monitoring System Based on LabVIEW,” Measuring Technology and Mechatronics Automation, vol. 1, 2009, pp. 292-295.

53. M. Reis, ”DC Traction Power Negative Cable Monitoring System,” Joint Rail Conference, 2006, pp. 225-229.

54. 林金面,工程材料,台北市:文笙書局,2002,第157-300頁。

55. 賴耿陽,環氧樹脂應用實務,台南市:復漢出版社,1989,第46-138頁。

56. 黃兆龍,『高強度水泥之施工及品質管制』,高強度混泥土概論,1990,第91-116頁。
57. 鄭采卿,高分子樹脂水泥砂漿工程性質之研究,碩士論文,國立成功大學建築研究所,台南市,2000。

58. C.E. Bingham and R. Markus, ”The Rheological Properties of Cement and Cement-Mortar-Stone,” Physics, vol. 4, 1933, pp. 88-96.

59. K. Mubarak, K.J. Bois and R. Zoughi, ”A Simple, Robust, and On-Site Microwave
Technique for Determining Water-to-Cement Ratio (w/c) of Fresh Portland Cement-
Based Materials,” Instrumentation and Measurement, IEEE Transactions on , vol. 50,
2001, pp. 1255-1263.

60. S.G. Hu, K. Tian and Q.J. Ding, ”Design and Test of New Cement Based Microwave Absorbing Materials,” 8th International Symposium on Antennas, Propagation and EM Theory, 2008, pp. 956-959.

61. Q. He, Y. Hasegawa and N. Kasagi, ”Heat transfer modelling of gas-liquid slug flow without phase change in a micro tube,” International Journal of Heat and Fluid Flow, vol.31, 2010, pp.126-136.

62. D. Yuan, W. Qu and T. Ma, ”Flow and heat transfer of liquid plug and neighboring vapor slugs in a pulsating heat pipe,” International Journal of Heat and Mass Transfer, vol. 53, 2010, pp.1260-1268.

63. L. Strubel, G. Ezs¨ol and I.Tiselj, ”Direct contact condensation induced transition from stratified to slug flow,” Nuclear Engineering and Design, vol. 240, 2010, pp. 266-274.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top