跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 04:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳愉珊
研究生(外文):CHEN, YU-SHAN
論文名稱:硬磁鍍膜CoMnP單層與多層CoMnP/Cu系統之殘留應力與磁性能探討
論文名稱(外文):Residual Stress and Magnetic Properties of Single-layered Hard Magnetic CoMnP Layer and Multi-layered CoMnP/Cu System
指導教授:林巧奇
指導教授(外文):LIN, CHIAO-CHI
口試委員:蔡健益徐志豪林巧奇
口試委員(外文):TSAY, CHIEN-YIEXU, ZHI-HAOLIN, CHIAO-CHI
口試日期:2019-07-30
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:95
中文關鍵詞:硬磁合金電鍍殘留應力X光繞射Stoney方程式
外文關鍵詞:hard magnetic alloyelectrodepositionresidual stressX-ray diffractionStoney equation
相關次數:
  • 被引用被引用:6
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
硬磁薄膜中的殘留應力對於微機電系統(MEMS)中的磁性元件的性能和可靠性是重要的關鍵。然而,因為MEMS中磁性元件需較高磁能積的電鍍硬磁薄膜,因此硬磁薄膜需要達到一定的厚度,亦由於硬磁薄膜厚度增加,導致存在薄膜內部的應變能增加,因此不可避免地產生顯著的殘留應力。許多文獻已開發了各種方法來降低電鍍硬磁薄膜中的殘留應力,其中最有效的方法為在電鍍過程中摻入中間層,用以增強附著性和釋放薄膜殘留應力。
在本研究中,以電鍍方式製備具有六方最密堆積(HCP)且織構方向為c軸方向之Co-Mn-P硬磁薄膜,針對相同的總磁性層厚度,比較單層CoMnP硬磁薄膜及多層CoMnP/Cu系統。運用X光sin2繞射法與曲率量測法,探討CoMnP硬磁薄膜微觀上晶粒應力、巨觀上膜層應力及硬磁性能三者之間相互關係。結果發現,中間層Cu的摻入能有效消除薄膜之膜層應力,多層CoMnP/Cu系統之硬磁性能仍保持在與單層CoMnP硬磁薄膜相當的水平,而硬磁性能與晶粒應力之間有強烈的關聯性,符合應力導致異向性之硬磁材料性質。

Residual stress in hard magnetic layers has been an important matter for both performance and reliability of magnetic components in magnetic microelectromechanical systems (MEMS). However, in order to achieve high energy-product, many MEMS devices heavily rely on increasing the thickness of magnetic layer by electrodeposition. Due to the increased magnetic volume, as elastic strain energy stored in the films increases, residual stress in the electrodeposited thick layers is inevitably generated. Various techniques have been developed to reduce residual stress in electrodeposited magnetic layers. Introducing interlamination layers for enhancing adhesion and reducing the residual stress during electrodeposition process is one promising technique to address the issue.
In this study, highly textured Co-Mn-P hard magnetic layers possessing hexagonal close-packed (HCP) microstructures was electroplated in single layered and multi-layered configurations with a same total magnetic thickness of 20 μm. Copper interlayers was introduced for film stress relieving. Relationships among hard magnetic properties and stresses characterized by sin2ψ XRD and curvature methods were systematically investigated. Interlamination layer of Cu can be an effective stress relieving layer. The VSM results indicate hard magnetic properties can be preserved with the multi-layered configuration. Hard magnetic properties of the electroplated Co-Mn-P are closely tied to XRD characterized stress because of stress induced anisotropy.

第一章、緒論 1
1.1 前言 1
1.2 背景與研究動機 3
第二章、理論基礎與文獻回顧 5
2.1 理論基礎 5
2.1.1 磁性材料 5
2.1.2 磁滯現象與磁異向性 8
2.1.3 薄膜殘留應力分析 11
2.1.3.1 X光sin2ψ繞射法 – 晶粒應力 13
2.1.3.2 曲率法 - Stoney方程式 21
2.2 文獻回顧 24
2.2.1 電鍍硬磁合金 24
2.2.2 多層膜系統 27
2.2.3 薄膜殘留應力 30
第三章、實驗方法 33
3.1 實驗設計 33
3.1.1 第一部份:單層CoMnP膜層 33
3.1.2 第二部份:多層CoMnP/Cu系統 33
3.1.3 第三部份:單層與多層系統之間特性比較 34
3.2 實驗流程與參數 35
3.2.1 基板選用及前處理 36
3.2.2 樣品製備 38
3.2.3 電鍍材料與參數 39
3.3 分析設備與方法 42
3.3.1 膜厚量測與表面粗糙度分析 42
3.3.2 表面形貌與化學成分分析 44
3.3.3 晶體結構分析 45
3.3.4 薄膜應力量測 46
3.3.5 磁性量測 48

第四章、結果與討論 50
4.1 單層CoMnP合金基本特性 50
4.1.1 電鍍參數及薄膜厚度之探討 50
4.1.2 表面形貌與成分分析 53
4.1.3 粗糙度分析 55
4.1.4 結晶結構分析 57
4.1.5 晶粒應力分析 58
4.1.6 硬磁性能分析 66
4.2 多層CoMnP/Cu系統基本特性 68
4.2.1 表面形貌及成分分析 68
4.2.2 粗糙度分析 71
4.2.3 結晶結構分析 75
4.2.4 晶粒應力分析 76
4.2.5 硬磁性能分析 79
4.3 單層CoMnP與多層CoMnP/Cu之比較 82
4.3.1 膜層成份與粗糙度比較 82
4.3.2 膜層應力比較 83
4.3.3 晶粒應力比較 85
4.3.4 硬磁性能比較 86
第五章、結論 90
參考文獻 91
附錄 95


[1]M. Arul Prakash , and D. Kandavel,“Recent Trends in MEMES,” Virudhunagar S .Vellaichamy Nadar Polytechnic College, India (2015).
[2]盧陽明 (譯) (2013)。材料科學概論 (原作者: W. F. Smith and J. Hashemi)。臺北市:東華書局。
[3]申繼陽 (2014)。Ti, Zr, Hf 底層效應對鐵鉑薄膜結構、內應力與磁性之影響。東海大學應用物理學系博士論文。
[4]陳泓逸 (2016)。熱裂解置備Fe1-xCoxSe1.09奈米粒子之磁性研究。屏東大學應用物理系光電材料系碩士論文。
[5]B. D. Cullity , and C. D. Graham,“Introduction to Magnetic Materials, ”Wiley, Canada (2009).
[6]曾斌輝 (2015)。電鍍 CoXP(X=無,Ni,Mn)永磁層之磁性與微結構之研究。逢甲大學材料與科學工程學系碩士論文。
[7]蕭祺儒 (2016)。電鍍 CoXP(X=無,Cu ,Mn)永磁鍍層及織構誘導電鍍之磁性與結構之研究。逢甲大學材料科學與工程學系碩士論文。
[8]王立愷 (2014)。離子數轟擊對銅/鈷氧化物奈米雙層薄膜之結構及磁性質影響。中興大學材料科學與工程學系碩士論文。
[9]G. Olabi, and A. Grunwald,“Design and Application of Magnetostrictive MS Materials,” Materials & Design, vol. 29, 469-483 (2008).
[10]陳怡秀 (2014)。利用非磁性材料B與TaOx對FePt薄膜做晶粒分隔之研究。中興大學材料科學與工程學系碩士論文。
[11]蕭世男 (2014)。初始應力/應變態對鐵鉑薄膜其序化轉變與動力學之影響。逢甲大學材料科學與工程學系博士論文。
[12]鞠曉山 (2004)。以離子源助鍍法蒸鍍ZnS光學薄膜。逢甲大學材料科學與工程學系。
[13]M. Mikolajūnas, D. Viržonis, V. Grigaliūnas, S. Tamulevičius, and R. Kaliasas, “An Impact of the Residual Stress on the Sacrificial Release of Microelectromechanical Membranes, ”Materials Science, vol. 13, 14-17 (2007).
[14]陳錫釗 (2005)。二氧化鈦光學薄膜在熱回火過程的光學和機械特性之研究。中央大學光電科學系博士論文。
[15]陳琨曜 (2006)。薄膜應力與基板彎曲問題之研究。成功大學土木工程學系碩士論文。
[16]黃俊維 (2004)。微懸臂樑感測器之力學模型與最佳化設計。台灣大學應用力學系碩士論文。
[17]W. D. Nix,“Metallic Thin Films stresses and Mechanical Properties in Metallic Films for Electronic, Optical and Magnetic Applications,”edited by Katayun Barmak , and Kevin Coffey, Woodhead Publishing Limited (2014).
[18]C. Noyan, T. C. Huang, and B. R. York,“Residual Stress/Strain Analysis in Thin Films by X-ray Diffraction,”Critical Review in Solid State and Materials Sciences, vol. 20, 125-177 (1995).
[19]C.-H. Ma, J.-H. Huang, and H. Chen,“Residual Stress Measurement in Textured Thin Film by Grazing-incidence X-ray Diffraction,”Thin Solid Films, vol. 418, 73-78 (2002).
[20]D. Tromans,“Elastic Anisotropy of HCP Metal Crystals and Polycrystals,” International Journal of Recent Research and Applied Studies, vol. 6, 462-483 (2011).
[21]J. Horkans, D. J. Seagle, and I.-C. H. Chang,“Electroplated Magnetic Media with Vertical Anisotropy,” Journal of the Electrochemical Society, vol. 137, 2056-2061 (1990).
[22]N. V. Myung, D. Y. Park, M. Schwartz, K. Nobe, H. Yang, C.-K. Yang, and J. W. Judy,“Electrodeposition hard magnetic thin film for MEMS application,” Sixth International Symposium on Magnetic Materials, Processes and Devices, vol. 29 (2000).
[23]N. V. Myung, D. Y. Park, B.-Y. Yoo, T. A. Sumodjo,“Develpoment of Electroplated Magnetic Materials for MEMS,” Journal of Magnetic Materials, vol. 265, 189-198 (2003).
[24]X. Sun, Q. Yuan, D. Fang, and H. Zhang,“Electrodeposition and Characterization of CoNiMnP Permanent Magnet Arrays for MEMS Sensor and Actuators,”Sensors and Actuators A:Physical, vol. 188, 190-197 (2012).
[25]F. Herrault, W. P. Galle, R. H. Shafer, and M. G. Allen,“Electroplating-based Approaches to Volumetric Nanomanufacturing,”Georgia Institute of Technology (2013).
[26]M. Kim, J. Kim, F. Herrault, R. Schafer, and M. G. Allen,“A MEMS Lamination Technology Based on Sequential Multilayer Electrodeposition,”Journal of Micromechanics and Microengineering, vol. 23, 905011-95020 (2013).
[27]Y. Li, J. Kim, M. Kim, A. Armutlulu, and M. G. Allen,“Thick Multilayered Micromachined Permanent Magnets with Preserved Magnetic Properties,”Journal of Microelectromechanical system, vol. 25, 498-597 (2016).
[28]S. Guan, and B. J. Nelson,“Electrodeposition of Low Residual Stress CoNiMnP Hard Magnetic Thin Films for Magnetic MEMS Actuators,”Journal of Magnetism and Magnetic Materials, vol. 292, 49-58 (2005).
[29]I. Tabakovic, J. Gong, S. Riemer, V. Venkatasamy, and M. Kief, “Stress Evolution in CoxFe1−x (x=0.33-0.87) Electrodeposited Films,” Electrochimica Acta, vol. 55, 9035-9041 (2010).
[30]B. D. Cullity, and S.R. Stock,“Elements of X-ray Diffraction,”Prentice Hall, New Jersey (2001).
[31]黃健強 (2012)。FePt-(B-Ag)顆粒薄膜之磁性與為結構研究。中興大學材料科學與工程學系碩士論文。
[32]I. M. Croll,“Magnetic Device with Alternating Lamina of Magnetic Material and Non-magnetic Metal on a Substrate,”U. S. Patent No. 3350180 (1967).
[33]陸永晟 (2011)。La(Fe11.8Si1.2)13材料製作與交流磁化率研究。中興大學物理學系碩士論文。
[34]Y. Wang, J. Ewing, and D. P. Amold,“Ultra-thick Electroplated CoPt Magnets for MEMS,”Journal of Microelectromechanical Systems, vol. 28, 311-320 (2019).

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊