|
[1] S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature 428 (6986), 911-918 (2004). [2] F. Ebisawa, T. Kurokawa, and S. Nara, "Electrical-Properties Of Polyacetylene Polysiloxane Interface," Journal Of Applied Physics 54 (6), 3255-3259 (1983). [3] A. Tsumura, H. Koezuka, and T. Ando, "Macromolecular Electronic Device - Field-Effect Transistor With A Polythiophene Thin-Film," Applied Physics Letters 49 (18), 1210-1212 (1986). [4] A. Assadi, C. Svensson, M. Willander et al., "Field-Effect Mobility Of Poly(3-Hexylthiophene)," Applied Physics Letters 53 (3), 195-197 (1988). [5] G. Horowitz, X. Z. Peng, D. Fichou et al., "Role Of The Semiconductor Insulator Interface In The Characteristics Of Pi-Conjugated-Oligomer-Based Thin-Film Transistors," Synth. Met. 51 (1-3), 419-424 (1992). [6] C. D. Dimitrakopoulos and P. R. L. Malenfant, "Organic thin film transistors for large area electronics," Adv. Mater. 14 (2), 99 (2002). [7] K. Kaneto, W. Y. Lim, W. Takashima, T. Endo, and M. Rikukawa, "Alkyl Chain Length Dependence of Field-Effect Mobilities in Regioregular Poly(3-Alkylthiophene) Films, "Jpn. J. Appl. Phys. 39 (2000) L872. [8] J. Nakamura, K. Murata, and K. Takahashi, "Relation between carrier mobility and cell performance in bulk heterojunction solar cells consisting of soluble polythiophene and fullerene derivatives, "Appl. Phys.Lett. 87 (2005) 132105. [9] E. von Hauff, J. Parisi, and V. Dyakonov, "P3HT:PCBM Bulk Heterojunction Solar Cells: Morphological And Electrical Characterization And Performance Optimization, "Thin Solid Films 511–512 (2006) 506. [10] T. Yasuda and T. Tsutsui,"Ambipolar Charge Transport in Organic Field-Effect Transistors Based on Lead Phthalocyanine with Low Band Gap Energy , "Jpn. J. Appl. Phys. 45 (2006) L595. [11] A. Dodabalapur, H. E. Katz, L. Torsi, R. C. Haddon, "Organic Heterostructure Field-Èffect Transistors ", Science 1995, 269, 1560. [12] A. Dodabalapur, H. E. Katz, L. Torsi, R. C. Haddon, "Organic field-effect bipolar transistors" , Appl. Phys. Lett. 1996, 68, 1108. [13] J. Wang, H. B. Wang, X. J. Yan, H. C. Huang, D.H.Yan, "Organic heterojunction and its application for double channel field-effect transistors, "Appl. Phys. Lett. 2005, 87, 093507. [14] K. Tada, H. Harada, K. Yoshino, "Polymeric Bipolar Thin-Film Transistor Utilizing Conducting Polymer Containing Electron Transport Dye, "Jpn. J. Appl. Phys. 1996, 35, L944. [15] E. J. Meijer, D. M. DeLeeuw, S. Setayesh, E. Van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C.Hummelen, U. Scherf, T. M. Klapwijk, "Solution-processed ambipolar organic field-effect transistors and inverters, "Nat. Mater.2003, 2, 678. [16] T. D. Anthopoulos, D. M. de Leeuw, E. Cantatore, S. Sateyesh, E. J. Meijer, C. Tanase, J. C. Hummelen, P.W. M. Blom, "Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors, "Appl. Phys. Lett. 2004, 85, 4205. [17] T. Takahashi, T. Takenobu, J. Takeya, Y. Iwasa, "Ambipolar organic field-effect transistors based on rubrene single crystals , "Appl.Phys. Lett. 2006, 88, 033505. [18] T. B. Singh, P. Senkarabacak, N. S. Sariciftci, A. Tanda, C. Lackner, R. Hagelauer, G. Horowitz, "Organic inverter circuits employing ambipolar pentacene field-effect transistors, " Appl. Phys. Lett. 2006, 89, 033512. [19] T. Nishikawa, S. Kobayashi, T. Nakanowatari, T. Mitani, T. Shimoda, Y. Kubozono, G. Yamamoto, H. Ishii, M. Niwano, Y. Iwasa, "Ambipolar operation of fullerene field-effect transistors by semiconductor/metal interface modification, "J. Appl. Phys. 2005, 97,104509. [20] R. Schmechel, M. Ahles, H. von Seggern, "A pentacene ambipolar transistor: Experiment and theory, " J. Appl.Phys. 2005, 98, 084511. [21] S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, " Ambipolar organic field-effect transistors fabricated using a composite of semiconducting polymer and soluble fullerene, " Appl. Phys. Lett. 89 (2006) 153505 [22] Z. Bao, A. Dodabalapur, and A. J. Lovinger, "Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility," Applied Physics Letters 69 (26), 4108-4110 (1996). [23] M. Surin, P. Leclere, R. Lazzaroni et al., "Relationship between the microscopic morphology and the charge transport properties in poly(3-hexylthiophene) field-effect transistors," Journal Of Applied Physics 100 (3) (2006). [24] H. Sirringhaus, P. J. Brown, R. H. Friend et al., "Two-dimensional charge transport in self-organized, high-mobility conjugated polymers," Nature 401 (6754), 685-688 (1999). [25] C. Waldauf, P. Schilinsky, M. Perisutti, J. Hauch, and C. J. Brabec, "Solution-processed organic n-type thin-film transistors, "Adv. Mater. 15(24), 2084 (2003). [26] T. D. Anthopoulos, C. Tanase, S. Setayesh, E. J. Meijer, J. C. Hummelen, P. W. M. Blom, and D. M. de Leeuw, "Ambipolar Organic Field-Effect Transistors Based on a Solution-Processed Methanofullerene, "Adv. Mater. Weinheim, Ger. 16, 2174 (2004). [27] X. Yang, J. K. J. van Duren, M. T. Rispens, J. C. Hummelen, R. A. J.. Janssen, M.A.J. Michels, J. Loos, "Crystalline organization of a methafullerene as used for plastic solar cell applications, "Adv. Mater., (16), 802-806, (2004) [28] Morrison and body, Organic Chemistry, sixth edition, 502 (1992). [29] G. Horowitz, "Organic field-effect transistors," Adv. Mater. 10 (5), 365-377 (1998). [30] P. G. Lecomber and W. E. Spear, "Electronic Transport In Amorphous Silicon Films," Phys. Rev. Lett. 25 (8), 509-& (1970). [31] D. Chirvase, J. Parisi, J.C. Hummelen, V. Dyakonov, "Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites, "Nanotechnology 15 (2004) 1317. [32] Photovoltaic devices Part 1: Measurement of Photovoltaic Current-Voltage Characteristics Standard IEC 60904-1, International Electrotechnical Commission, Geneva, Switzerland.
|