跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 18:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭太獅
研究生(外文):Cheng,Tai-Shih
論文名稱:利用複合半導體層製作雙極性感光電晶體
論文名稱(外文):Ambipolar Phototransistors and Complementary-like Inverters Based on Photosensitive Composite Films
指導教授:陳方中陳方中引用關係
指導教授(外文):Fang-Chung Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:61
中文關鍵詞:雙極性光電晶體反向器場效電晶體
外文關鍵詞:ambipolarphototransistorinverterFET
相關次數:
  • 被引用被引用:0
  • 點閱點閱:394
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
我們將rr-P3HT 及PCBM以不同重量濃度比例混合於化學溶劑,並使用溶劑退火方式塗佈形成電晶體之雙極性薄膜有機半導體層。觀察到當兩種材料在主動層中之比例發生變化之同時,雙極性有機電晶體電性將同步展現電子及電動遷移率之消長變化。此外,在實驗上進一步驗證各種接觸金屬與增添超薄金屬氧化層緩衝層對元件表現之比較。本論文另一重點為發現研製之光電晶體在光照環境下將展現不同之電性調變。最後,由於本實驗之半導體層乃P型及N型之混合層,實驗結果上發現較單一P型或N型半導體有較高之臨界電壓,是以固定P3HT並改以PTCDI-C8置換PCBM作上下雙層結構,明顯的發現利用雙層結構能提升P型電子遷移率及顯著降低操作臨界電壓同時也獲得較佳之N型特性。本研究乃詳盡地研究出以P3HT及PCBM之雙極性電晶體特性並製作出基本反向邏輯電路,發現其光調變特性並對其光調變成因進行探討。半導體材料物性則以原子力顯微鏡、X光繞射儀、X光光電子光譜儀及吸收光譜儀作輔助分析。
Various organic-semiconductor-based ambipolar transistors operated both in positive and negative gate voltage are recently key components in the field of organic complementary-like circuit development. Besides, it will be more potential by adopting solution-processed method or inject-printing methods. In the thesis, two famous organic conducting materials rr-P3HT and PCBM were introduced in developing photosensitive ambipolar field-effect transistors. Herein, we successfully make inverter circuit and let the characteristics discussed in this article. Besides, the variation of hole and electron mobilities are observed and got statistics according to different composite films of P3HT / PCBM ratio. Furthermore, we experimentally introduce different metal electrodes and ultra thin metal oxide layer for comparison to study the performances . In the thesis, another investigation is to fabricate phototransistor with variable characteristics under illumination and these characteristics may be the basis for developing phototransistor and the design of sensor circuit. To decrease the higher threshold voltage both in p-channel and n-channel, bi-layer structure and PTCDI-C8 were introduced to arrive the aim. After studying the characteristics of phototransistor based on the different composite films, we try to explain the mechanism of photoconductivity and photovoltaic effect under illumination. Finally, the semiconductor materials are analysed by AFM, XRD, XPS and UV-visible.
Contents
中文摘要 i
Abstract ii
誌謝 iii
Contents iv
List of Tables vi
Figure Captions vii

Chapter 1 Introduction 1
1.1 Overview Organic Electronics 1
1.2 Overview Organic Ambipoalr Field-effect Transistors 3
1.3 Basic information about P3HT 4
1.4 Basic information about PCBM 6
1.5 Top Contact Structure of Field-Effect -Transistor 7
1.6 Motivations 7
1.7 Thesis Organization 8

Chapter 2 Mechanism and Operation 9
2.1 The Charge Carrier Transportation in Organic
Semiconductors 9
2.2 Hopping Model 10
2.3 Multiple Trapping and Release ( MTR ) 10
2.4 The Operation of Organic Field Effect Transistor 11
2.5 The Parameters Extraction of Organic Thin Film
Transistors 12
2.6 The Principle for the Operation of Complementary-like
Inverter 14

Chapter 3 Experiment 17
3.1 The Materials 17
3.2 The Device Fabrication 18
3.2.1 Substrates Preparation 18
3.2.2 The Surface treatment of Gate/Active Layer
Interface 19
3.2.3 Spin Coating of P3HT/PCBM as the Active Layer 19
3.2.4 Treat with Solvent Annealing and Thermal Annealing 19
3.2.5 Ultra Thin Metal Oxide MoO3 and V2O5
Deposited 19
3.2.6 Evaporation Metal Electrode Onto Semiconductor Layer
as the Electrode 20
3.3 The Device Measurement 21
3.3.1 I-V Characteristics Measurement 21
3.3.2 Surface Morphology Measurement 22

Chapter 4 Results and Discussion 23
4.1 Device Operated In N-Channel, Ambipolar , P-Channel 23
4.1.1 Output Characteristic of Ambipolar Field-effect
Transistor 23
4.1.2 Transfer Characteristic of Ambipolar Field-effect
Transistor 24
4.1.3 Voltage Transfer Characteristic of Complementary-like
Inverter 25
4.1.4 Dependence of Electron / Hole Mobilities on the
Ratio of the Composite Film 30
4.1.5 Devices With Balanced Threshold Voltage 32
4.2 Device with Different Source-Drain Electrodes 33
4.2.1 Device With Ca, Ag, Al and Au as Electrodes
forComparison 33
4.2.2Ultra-Thin Nano-Scale Transition Metal Oxide Layer 36
4.3 The Photoelectric Effect on the Ambipolar Device 40
4.4 The Morphologic Analysis With Different P3HT and PCBM
Composition 47
4.5 The GIXRD Diagram of the Different Composite Films 50
4.6 Bi-layer Ambipolar Field-Effect Transistor Based on
PTCDI-C8 and P3HT 53

Chapter 5 Conclusions 57

References 59
[1]
S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature 428 (6986), 911-918 (2004).
[2]
F. Ebisawa, T. Kurokawa, and S. Nara, "Electrical-Properties Of Polyacetylene Polysiloxane Interface," Journal Of Applied Physics 54 (6), 3255-3259 (1983).
[3]
A. Tsumura, H. Koezuka, and T. Ando, "Macromolecular Electronic Device - Field-Effect Transistor With A Polythiophene Thin-Film," Applied Physics Letters 49 (18), 1210-1212 (1986).
[4]
A. Assadi, C. Svensson, M. Willander et al., "Field-Effect Mobility Of Poly(3-Hexylthiophene)," Applied Physics Letters 53 (3), 195-197 (1988).
[5]
G. Horowitz, X. Z. Peng, D. Fichou et al., "Role Of The Semiconductor Insulator Interface In The Characteristics Of Pi-Conjugated-Oligomer-Based Thin-Film Transistors," Synth. Met. 51 (1-3), 419-424 (1992).
[6]
C. D. Dimitrakopoulos and P. R. L. Malenfant, "Organic thin film transistors for large area electronics," Adv. Mater. 14 (2), 99 (2002).
[7]
K. Kaneto, W. Y. Lim, W. Takashima, T. Endo, and M. Rikukawa, "Alkyl Chain Length Dependence of Field-Effect Mobilities in Regioregular Poly(3-Alkylthiophene) Films, "Jpn. J. Appl. Phys. 39 (2000) L872.
[8]
J. Nakamura, K. Murata, and K. Takahashi, "Relation between carrier mobility and cell performance in bulk heterojunction solar cells consisting of soluble polythiophene and fullerene derivatives, "Appl. Phys.Lett. 87 (2005) 132105.
[9]
E. von Hauff, J. Parisi, and V. Dyakonov, "P3HT:PCBM Bulk Heterojunction Solar Cells: Morphological And Electrical Characterization And Performance Optimization, "Thin Solid Films 511–512 (2006) 506.
[10]
T. Yasuda and T. Tsutsui,"Ambipolar Charge Transport in Organic Field-Effect Transistors Based on Lead Phthalocyanine with Low Band Gap Energy , "Jpn. J. Appl. Phys. 45 (2006) L595.
[11]
A. Dodabalapur, H. E. Katz, L. Torsi, R. C. Haddon, "Organic Heterostructure Field-Èffect Transistors ", Science 1995, 269, 1560.
[12]
A. Dodabalapur, H. E. Katz, L. Torsi, R. C. Haddon, "Organic field-effect bipolar transistors" , Appl. Phys. Lett. 1996, 68, 1108.
[13]
J. Wang, H. B. Wang, X. J. Yan, H. C. Huang, D.H.Yan, "Organic heterojunction and its application for double channel field-effect transistors, "Appl. Phys. Lett. 2005, 87, 093507.
[14]
K. Tada, H. Harada, K. Yoshino, "Polymeric Bipolar Thin-Film Transistor Utilizing Conducting Polymer Containing Electron Transport Dye, "Jpn. J. Appl. Phys. 1996, 35, L944.
[15]
E. J. Meijer, D. M. DeLeeuw, S. Setayesh, E. Van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C.Hummelen, U. Scherf, T. M. Klapwijk, "Solution-processed ambipolar organic field-effect transistors and inverters, "Nat. Mater.2003, 2, 678.
[16]
T. D. Anthopoulos, D. M. de Leeuw, E. Cantatore, S. Sateyesh, E. J. Meijer, C. Tanase, J. C. Hummelen, P.W. M. Blom, "Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors, "Appl. Phys. Lett. 2004, 85, 4205.
[17]
T. Takahashi, T. Takenobu, J. Takeya, Y. Iwasa, "Ambipolar organic field-effect transistors based on rubrene single crystals , "Appl.Phys. Lett. 2006, 88, 033505.
[18] T. B. Singh, P. Senkarabacak, N. S. Sariciftci, A. Tanda, C. Lackner, R. Hagelauer, G. Horowitz, "Organic inverter circuits employing ambipolar pentacene field-effect transistors, " Appl. Phys. Lett. 2006, 89, 033512.
[19]
T. Nishikawa, S. Kobayashi, T. Nakanowatari, T. Mitani, T. Shimoda, Y. Kubozono, G. Yamamoto, H. Ishii, M. Niwano, Y. Iwasa, "Ambipolar operation of fullerene field-effect transistors by semiconductor/metal interface modification, "J. Appl. Phys. 2005, 97,104509.
[20]
R. Schmechel, M. Ahles, H. von Seggern, "A pentacene ambipolar transistor: Experiment and theory, " J. Appl.Phys. 2005, 98, 084511.
[21]
S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, " Ambipolar organic field-effect transistors fabricated using a composite of semiconducting polymer and soluble fullerene, " Appl. Phys. Lett. 89 (2006) 153505
[22]
Z. Bao, A. Dodabalapur, and A. J. Lovinger, "Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility," Applied Physics Letters 69 (26), 4108-4110 (1996).
[23]
M. Surin, P. Leclere, R. Lazzaroni et al., "Relationship between the microscopic morphology and the charge transport properties in poly(3-hexylthiophene) field-effect transistors," Journal Of Applied Physics 100 (3) (2006).
[24]
H. Sirringhaus, P. J. Brown, R. H. Friend et al., "Two-dimensional charge transport in self-organized, high-mobility conjugated polymers," Nature 401 (6754), 685-688 (1999).
[25]
C. Waldauf, P. Schilinsky, M. Perisutti, J. Hauch, and C. J. Brabec, "Solution-processed organic n-type thin-film transistors, "Adv. Mater. 15(24), 2084 (2003).
[26]
T. D. Anthopoulos, C. Tanase, S. Setayesh, E. J. Meijer, J. C. Hummelen,
P. W. M. Blom, and D. M. de Leeuw, "Ambipolar Organic Field-Effect
Transistors Based on a Solution-Processed Methanofullerene, "Adv. Mater. Weinheim, Ger. 16, 2174 (2004).
[27]
X. Yang, J. K. J. van Duren, M. T. Rispens, J. C. Hummelen, R. A. J.. Janssen, M.A.J. Michels, J. Loos, "Crystalline organization of a methafullerene as used for plastic solar cell applications, "Adv. Mater., (16), 802-806, (2004)
[28]
Morrison and body, Organic Chemistry, sixth edition, 502 (1992).
[29]
G. Horowitz, "Organic field-effect transistors," Adv. Mater. 10 (5), 365-377 (1998).
[30]
P. G. Lecomber and W. E. Spear, "Electronic Transport In Amorphous Silicon Films," Phys. Rev. Lett. 25 (8), 509-& (1970).
[31]
D. Chirvase, J. Parisi, J.C. Hummelen, V. Dyakonov, "Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites, "Nanotechnology 15 (2004) 1317.
[32]
Photovoltaic devices Part 1: Measurement of Photovoltaic Current-Voltage Characteristics Standard IEC 60904-1, International Electrotechnical Commission, Geneva, Switzerland.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊