|
Ahmed, E., & Holmström, S. J. (2014). Siderophores in environmental research: roles and applications. Microbial biotechnology, 7(3), 196-208. Aizenberg-Gershtein, Y., Izhaki, I., & Halpern, M. (2013). Do honeybees shape the bacterial community composition in floral nectar? PloS one, 8(7), e67556. Akinrinlola, R. J. (2018). Evaluation of bacillus strains for plant growth-promotion potentials on corn (Zea mays), wheat (Triticum aestivum), and soybean (Glycine max). Ali, S., Charles, T. C., & Glick, B. R. (2014). Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiology and Biochemistry, 80 160-167. Andrade, L. F., de Souza, G. L. O. D., Nietsche, S., Xavier, A. A., Costa, M. R., Cardoso, A. M. S., & Pereira, D. F. G. S. (2014). Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. Journal of Microbiology, 52(1), 27-34. Antoun, H., & Prévost, D. (2005). Ecology of plant growth promoting rhizobacteria. In PGPR: Biocontrol and biofertilization (pp. 1-38). Springer, Dordrecht. Arnaud, D., & Hwang, I. (2015). A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. Molecular Plant, 8(4), 566-581. Aznar, A., Chen, N. W., Thomine, S., & Dellagi, A. (2015). Immunity to plant pathogens and iron homeostasis. Plant Science, 240 90-97. Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and Soil, 378(1-2), 1-33. Berg, G., Opelt, K., Zachow, C., Lottmann, J., Götz, M., Costa, R., & Smalla, K. (2006). The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiology Ecology, 56(2), 250-261. Bhutani, N., Maheshwari, R., Negi, M., & Suneja, P. (2018). Optimization of IAA production by endophytic Bacillus spp. from Vigna radiata for their potential use as plant growth promoters. Israel Journal of Plant Sciences, 65(01-02), 83-96. Bodenhausen, N., Horton, M. W., & Bergelson, J. (2013). Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PloS one, 8(2), e56329. Brock, A. K., Berger, B., Mewis, I., & Ruppel, S. (2013). Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana. Microbial Ecology, 65(3), 661-670. Bruto, M., Prigent-Combaret, C., Muller, D., & Moënne-Loccoz, Y. (2014). Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Scientific Reports, 4, 6261. Calvo, P., Watts, D. B., Kloepper, J. W., & Torbert, H. A. (2017). Effect of microbial‐based inoculants on nutrient concentrations and early root morphology of corn (Zea mays). Journal of Plant Nutrition and Soil Science, 180(1), 56-70. Carvalhais, L. C., Muzzi, F., Tan, C. H., Choo, J. H., & Schenk, P. M. (2013). Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities. Frontiers in Plant Science, 4, 235. Castrillo, G., Teixeira, P. J. P. L., Paredes, S. H., Law, T. F., de Lorenzo, L., Feltcher, M. E., ... & Paz-Ares, J. (2017). Root microbiota drive direct integration of phosphate stress and immunity. Nature, 543(7646), 513. Castro, R. A., Dourado, M. N., Almeida, J. R. D., Lacava, P. T., Nave, A., Melo, I. S. D., & Quecine, M. C. (2018). Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth. Brazilian Journal of Microbiology, 49(1), 59-66. Cedeño-García, G. A., Gerding, M., Moraga, G., Inostroza, L., Fischer, S., Sepúlveda-Caamaño, M., & Oyarzúa, P. (2018). Plant growth promoting rhizobacteria with ACC deaminase activity isolated from Mediterranean dryland areas in Chile: Effects on early nodulation in alfalfa. Chilean journal of agricultural research, 78(3), 360-369. Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34(1), 33-41. Chi, F., Shen, S. H., Cheng, H. P., Jing, Y. X., Yanni, Y. G., & Dazzo, F. B. (2005). Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl. Environ. Microbiol., 71(11), 7271-7278. Chung, J. H., Song, G. C., & Ryu, C. M. (2016). Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity. Plant Molecular Biology, 90(6), 677-687. Čolo, J. O. S. I. P., Hajnal-Jafari, T. I., Durić, S., Stamenov, D., & Hamidović, S. A. U. D. (2014). Plant growth promotion rhizobacteria in onion production. Pol. J. Microbiol, 63(1), 83-88. Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42(5), 669-678. Compant, S., Kaplan, H., Sessitsch, A., Nowak, J., Ait Barka, E., & Clément, C. (2008). Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiology Ecology, 63(1), 84-93. Compant, S., Mitter, B., Colli-Mull, J. G., Gangl, H., & Sessitsch, A. (2011). Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microbial Ecology, 62(1), 188-197. Conrath, U., Beckers, G. J., Langenbach, C. J., & Jaskiewicz, M. R. (2015). Priming for enhanced defense. Annual Review of Phytopathology, 53. Coutinho, B. G., Licastro, D., Mendonça-Previato, L., Cámara, M., & Venturi, V. (2015). Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Molecular Plant-Microbe Interactions, 28(1), 10-21. D'ALESSANDRO, M. A. R. C. O., Erb, M., Ton, J., Brandenburg, A., Karlen, D., Zopfi, J., & Turlings, T. C. (2014). Volatiles produced by soil‐borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant, Cell & Environment, 37(4), 813-826. Danhorn, T., & Fuqua, C. (2007). Biofilm formation by plant-associated bacteria. Annu. Rev. Microbiol., 61, 401-422. Dastager, S. G., Deepa, C. K., Puneet, S. C., Nautiyal, C. S., & Pandey, A. (2009). Isolation and characterization of plant growth‐promoting strain Pantoea NII‐186. From Western Ghat Forest soil, India. Letters in Applied Microbiology, 49(1), 20-25. Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Ecology, 72(3), 313-327. Doty, S. L. (2017). Functional importance of the plant endophytic microbiome: implications for agriculture, forestry, and bioenergy. In Functional Importance of the Plant Microbiome (pp. 1-5). Springer, Cham. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., & Sundaresan, V. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 112(8), E911-E920. Eljounaidi, K., Lee, S. K., & Bae, H. (2016). Bacterial endophytes as potential biocontrol agents of vascular wilt diseases–review and future prospects. Biological Control, 103, 62-68. Ferrando, L., & Fernández Scavino, A. (2015). Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding. FEMS microbiology ecology, 91(9). Frank, A., Saldierna Guzmán, J., & Shay, J. (2017). Transmission of bacterial endophytes. Microorganisms, 5(4), 70. Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A., Pöhlker, C., Andreae, M. O., ... & Su, H. (2016). Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmospheric Research, 182, 346-376. Gamalero, E., & Glick, B. R. (2015). Bacterial modulation of plant ethylene levels. Plant Physiology, 169(1), 13-22. Glaeser, S. P., Imani, J., Alabid, I., Guo, H., Kumar, N., Kämpfer, P., & Hartmann, A. (2016). Non-pathogenic Rhizobium radiobacter F4 deploys plant beneficial activity independent of its host Piriformospora indica. The ISME Journal, 10(4), 871. Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30-39. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812-818. Gomes, N. C. M., Fagbola, O., Costa, R., Rumjanek, N. G., Buchner, A., Mendona-Hagler, L., & Smalla, K. (2003). Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl. Environ. Microbiol., 69(7), 3758-3766. Guiñazú, L. B., Andrés, J. A., Rovera, M., Balzarini, M., & Rosas, S. B. (2013). Evaluation of rhizobacterial isolates from Argentina, Uruguay and Chile for plant growth-promoting characteristics and antagonistic activity towards Rhizoctonia sp. and Macrophomina sp. in vitro. European Journal of Soil Biology, 54, 69-77. Gupta, P., Kumar, V., Usmani, Z., Rani, R., & Chandra, A. (2018). Phosphate solubilization and chromium (VI) remediation potential of Klebsiella sp. strain CPSB4 isolated from the chromium contaminated agricultural soil. Chemosphere, 192, 318-327. Grayston, S. J., Vaughan, D., & Jones, D. (1997). Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology, 5(1), 29-56. Haidar, B., Ferdous, M., Fatema, B., Ferdous, A. S., Islam, M. R., & Khan, H. (2018). Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants. Microbiological Research, 208, 43-53. Han, Q., Wu, F., Wang, X., Qi, H., Shi, L., Ren, A., & Tang, C. (2015). The bacterial lipopeptide iturins induce V erticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen‐associated molecular pattern‐triggered immunity. Environmental Microbiology, 17(4), 1166-1188. Hardoim, P. R., van Overbeek, L. S., & van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16(10), 463-471. Hill, K. A., Shepson, P. B., Galbavy, E. S., Anastasio, C., Kourtev, P. S., Konopka, A., & Stirm, B. H. (2007). Processing of atmospheric nitrogen by clouds above a forest environment. Journal of Geophysical Research: Atmospheres, 112(D11). Hmaeid, N., Wali, M., Mahmoud, O. M. B., Pueyo, J. J., Ghnaya, T., & Abdelly, C. (2019). Efficient rhizobacteria promote growth and alleviate NaCl-induced stress in the plant species Sulla carnosa. Applied Soil Ecology, 133, 104-113. Jasim, B., Joseph, A. A., John, C. J., Mathew, J., & Radhakrishnan, E. K. (2014). Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech, 4(2), 197-204. Jones, J. D., & Dangl, J. L. (2006). The plant immune system. nature, 444(7117), 323. Kandel, S., Joubert, P., & Doty, S. (2017). Bacterial endophyte colonization and distribution within plants. Microorganisms, 5(4), 77. Kang, S. M., Khan, A. L., You, Y. H., Kim, J. G., Kamran, M., & Lee, I. J. (2014). Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. J. Microbiol. Biotechnol, 24(1), 106-112. Karthikeyan, B., Joe, M. M., Islam, M. R., & Sa, T. (2012). ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis, 56(2), 77-86. Khan, Z., Guelich, G., Phan, H., Redman, R., & Doty, S. (2012). Bacterial and yeast endophytes from poplar and willow promote growth in crop plants and grasses. ISRN Agronomy, 2012. Kifle, M. H., & Laing, M. D. (2016). Effects of selected diazotrophs on maize growth. Frontiers in Plant Science, 7, 1429. Koch, B., & Evans, H. J. (1966). Reduction of acetylene to ethylene by soybean root nodules. Plant Physiology, 41(10), 1748. Kumar, A., Singh, R., Yadav, A., Giri, D. D., Singh, P. K., & Pandey, K. D. (2016). Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech, 6(1), 60. Kumawat, K. C., Sharma, P., Sirari, A., Singh, I., Gill, B. S., Singh, U., & Saharan, K. (2019). Synergism of Pseudomonas aeruginosa (LSE-2) nodule endophyte with Bradyrhizobium sp.(LSBR-3) for improving plant growth, nutrient acquisition and soil health in soybean. World Journal of Microbiology and Biotechnology, 35(3), 47. Ladha, J. K., Reddy, C. K., Padre, A. T., & Van Kessel, C. (2011). Role of nitrogen fertilization in sustaining organic matter in cultivated soils. Journal of Environmental Quality, 40(6), 1756-1766. Lamb, T. G., Tonkyn, D. W., & Kluepfel, D. A. (1996). Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Canadian Journal of Microbiology, 42(11), 1112-1120. Li, J. H., Wang, E. T., Chen, W. F., & Chen, W. X. (2008). Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biology and Biochemistry, 40(1), 238-246. Liu, H., Carvalhais, L. C., Schenk, P. M., & Dennis, P. G. (2017). Effects of jasmonic acid signalling on the wheat microbiome differ between body sites. Scientific Reports, 7, 41766. Long, H. H., Schmidt, D. D., & Baldwin, I. T. (2008). Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One, 3(7), e2702. Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541-556. Marques, J. M., da Silva, T. F., Vollú, R. E., de Lacerda, J. R. M., Blank, A. F., Smalla, K., & Seldin, L. (2015). Bacterial endophytes of sweet potato tuberous roots affected by the plant genotype and growth stage. Applied Soil Ecology, 96, 273-281. Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C. M., Pozo, M. J., & Conrath, U. (2016). Recognizing plant defense priming. Trends in Plant Science, 21(10), 818-822. Matos, A. D., Gomes, I. C., Nietsche, S., Xavier, A. A., Gomes, W. S., Dos Santos Neto, J. A., & Pereira, M. C. (2017). Phosphate solubilization by endophytic bacteria isolated from banana trees. Anais da Academia Brasileira de Ciências, 89(4), 2945-2954. McKenzie, R. H., & Roberts, T. L. (1990). Soil and fertilizers phosphorus update. In Proceedings of Alberta Soil Science Workshop Proceedings, Feb (pp. 20-22). Melotto, M., Underwood, W., & He, S. Y. (2008). Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol., 46, 101-122. Miliute, I., Buzaite, O., Gelvonauskiene, D., Sasnauskas, A., Stanys, V., & Baniulis, D. (2016). Plant growth promoting and antagonistic properties of endophytic bacteria isolated from domestic apple. Zemdirbyste-Agriculture, 103(1). Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Reviews in Microbiology, 55(1), 165-199. Mitter, B., Petric, A., Shin, M. W., Chain, P. S., Hauberg-Lotte, L., Reinhold-Hurek, B., & Sessitsch, A. (2013). Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Frontiers in Plant Science, 4, 120. Mokrani, S., Rai, A., Belabid, L., Cherif, A., Cherif, H., Mahjoubi, M., & Nabti, E. (2019). Pseudomonas diversity in western Algeria: role in the stimulation of bean germination and common bean blight biocontrol. European Journal of Plant Pathology, 153(2), 397-415. Mosimann, C., Oberhänsli, T., Ziegler, D., Nassal, D., Kandeler, E., Boller, T., ... & Thonar, C. (2017). Tracing of two Pseudomonas strains in the root and rhizoplane of maize, as related to their plant growth-promoting effect in contrasting soils. Frontiers in Microbiology, 7, 2150. Moyes, A. B., Kueppers, L. M., Pett‐Ridge, J., Carper, D. L., Vandehey, N., O'Neil, J., & Frank, A. C. (2016). Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytologist, 210(2), 657-668. Naik, P. R., Raman, G., Narayanan, K. B., & Sakthivel, N. (2008). Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiology, 8(1), 230. Nie, M., Zhang, X. D., Wang, J. Q., Jiang, L. F., Yang, J., Quan, Z. X., ... & Li, B. (2009). Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. Soil Biology and Biochemistry, 41(12), 2535-2542. Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42(3), 207-220. Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42(3), 207-220. Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase‐containing plant growth‐promoting rhizobacteria. Physiologia plantarum, 118(1), 10-15. Persello‐Cartieaux, F., Nussaume, L., & Robaglia, C. (2003). Tales from the underground: molecular plant–rhizobacteria interactions. Plant, Cell & Environment, 26(2), 189-199. Philippot, L., Raaijmakers, J. M., Lemanceau, P., & Van Der Putten, W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11(11), 789. Pierik, R., Tholen, D., Poorter, H., Visser, E. J., & Voesenek, L. A. (2006). The Janus face of ethylene: growth inhibition and stimulation. Trends in Plant Science, 11(4), 176-183. Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347-375. Piromyou, P., Greetatorn, T., Teamtisong, K., Okubo, T., Shinoda, R., Nuntakij, A., & Teaumroong, N. (2015). Preferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution. Appl. Environ. Microbiol., 81(9), 3049-3061. Puri, A., Padda, K. P., & Chanway, C. P. (2016). Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b-2R and its GFP derivative in corn in a long-term trial. Symbiosis, 69(2), 123-129. Purnawati, A. (2014). Endophytic bacteria as biocontrol agents of tomato bacterial wilt disease. Journal of Tropical Life Science, 4(1), 33-36. Rasche, F., Trondl, R., Naglreiter, C., Reichenauer, T. G., & Sessitsch, A. (2006). Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum anuum L.). Canadian Journal of Microbiology, 52(11), 1036-1045. Rashid, S., Charles, T. C., & Glick, B. R. (2012). Isolation and characterization of new plant growth-promoting bacterial endophytes. Applied Soil Ecology, 61, 217-224. Registeri, R., Taghavi, S. M., & Banihashemi, Z. (2012). Effect of Root Colonizing Bacteria on Plant Growth and Fusarium Wilt in Cucumis melo. Journal of Agricultural Science & Technology, 14(5). Reinhold-Hurek, B., & Hurek, T. (1998). Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Critical Reviews in Plant Sciences, 17(1), 29-54. Reinhold-Hurek, B., Maes, T., Gemmer, S., Van Montagu, M., & Hurek, T. (2006). An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Molecular Plant-Microbe Interactions, 19(2), 181-188. Ren, G., Zhang, H., Lin, X., Zhu, J., & Jia, Z. (2015). Response of leaf endophytic bacterial community to elevated CO2 at different growth stages of rice plant. Frontiers in Microbiology, 6, 855. Rodrı́guez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17(4-5), 319-339. Rohini, S., Aswani, R., Kannan, M., Sylas, V. P., & Radhakrishnan, E. K. (2018). Culturable endophytic bacteria of ginger rhizome and their remarkable multi-trait plant growth-promoting features. Current Microbiology, 75(4), 505-511. Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M. L., & Pierotti Cei, F. (2015). Improved plant resistance to drought is promoted by the root‐associated microbiome as a water stress‐dependent trait. Environmental Microbiology, 17(2), 316-331. Rosenblueth, M., & Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19(8), 827-837. Samain, E., van Tuinen, D., & Selim, S. (2017). The plant-growth-promoting rhizobacterium Paenibacillus sp. strain B2stimulates wheat defense mechanisms against septoria leaf blotch and root colonization by Curtobacterium plantarum. Biol. Control, 114, 87-96. Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92-99. Sessitsch, A., Hardoim, P., Döring, J., Weilharter, A., Krause, A., Woyke, T., & Hurek, T. (2012). Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Molecular Plant-Microbe Interactions, 25(1), 28-36. Sgroy, V., Cassán, F., Masciarelli, O., Del Papa, M. F., Lagares, A., & Luna, V. (2009). Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. ApplIed Microbiology and Biotechnology, 85(2), 371-381. Sheibani-Tezerji, R., Rattei, T., Sessitsch, A., Trognitz, F., & Mitter, B. (2015). Transcriptome profiling of the endophyte Burkholderia phytofirmans PsJN indicates sensing of the plant environment and drought stress. MBio, 6(5), e00621-15. Shreedhar, S., Devasya, R. P., Naregundi, K., Young, C. C., & Bhagwath, A. A. (2014). Phosphate solubilizing uranium tolerant bacteria associated with monazite sand of a natural background radiation site in South-West coast of India. Annals of Microbiology, 64(4), 1683-1689. Silva Filho, G. N., & Vidor, C. (2000). Solubilização de fostatos por microrganismos na presença de fontes de carbono. Revista Brasileira de Ciência do Solo, 24(2), 311-319. Sridevi, M., & Mallaiah, K. V. (2009). Phosphate solubilization by Rhizobium strains. Indian Journal of Microbiology, 49(1), 98-102. Straub, D., Rothballer, M., Hartmann, A., & Ludewig, U. (2013). The genome of the endophytic bacterium H. frisingense GSF30T identifies diverse strategies in the Herbaspirillum genus to interact with plants. Frontiers in Microbiology, 4, 168. Su, F., Jacquard, C., Villaume, S., Michel, J., Rabenoelina, F., Clément, C., ... & Vaillant-Gaveau, N. (2015). Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Frontiers in Plant Science, 6, 810. Subramanian, P., Mageswari, A., Kim, K., Lee, Y., & Sa, T. (2015). Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill.) by activation of their antioxidant capacity. Molecular Plant-Microbe Interactions, 28(10), 1073-1081. Taghavi, S., Van Der Lelie, D., Hoffman, A., Zhang, Y. B., Walla, M. D., Vangronsveld, J., & Monchy, S. (2010). Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genetics, 6(5), e1000943. Terakado-Tonooka, J., Fujihara, S., & Ohwaki, Y. (2013). Possible contribution of Bradyrhizobium on nitrogen fixation in sweet potatoes. Plant and Soil, 367(1-2), 639-650. Truyens, S., Weyens, N., Cuypers, A., & Vangronsveld, J. (2015). Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environmental Microbiology Reports, 7(1), 40-50. Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A., & Netrusov, A. I. (2006). Microbial producers of plant growth stimulators and their practical use: a review. Applied Biochemistry and Microbiology, 42(2), 117-126. Tsurumaru, H., Okubo, T., Okazaki, K., Hashimoto, M., Kakizaki, K., Hanzawa, E., & Ikeda, S. (2015). Metagenomic analysis of the bacterial community associated with the taproot of sugar beet. Microbes and Environments, ME14109. Ullah, A., Mushtaq, H., Ali, H., Munis, M. F. H., Javed, M. T., & Chaudhary, H. J. (2015). Diazotrophs-assisted phytoremediation of heavy metals: a novel approach. Environmental Science and Pollution Research, 22(4), 2505-2514. Upreti, R., & Thomas, P. (2015). Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects. Frontiers in Microbiology, 6, 255. Uren, N. C. (2000). Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In The Rhizosphere (pp. 35-56). CRC Press. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist, 206(4), 1196-1206. Vassilev, N., Vassileva, M., & Nikolaeva, I. (2006). Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied Microbiology and Biotechnology, 71(2), 137-144. Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews Microbiology, 10(12), 828. Wang, Y., Shi, Y., Li, B., Shan, C., Ibrahim, M., Jabeen, A., & Sun, G. (2012). Phosphate solubilization of Paenibacillus polymyxa and Paenibacillus macerans from mycorrhizal and non-mycorrhizal cucumber plants. Afr. J. Microbiol. Res, 6, 4567-4573. Whipps, J. M., & Lynch, J. M. (1985). Energy losses by the plant in rhizodeposition. Plant Products and the New Technology. Wilson, D. (1995). Endophyte: the evolution of a term, and clarification of its use and definition. Oikos, 274-276. Yu, Z. H., Fan, G. Q., Liu, X. B., Yu, J., & Wang, G. H. (2018). Isolation and characterization of indole acetic acid producing root endophytic bacteria and their potential for promoting crop growth. Zachow, C., Jahanshah, G., de Bruijn, I., Song, C., Ianni, F., Pataj, Z., & Gross, H. (2015). The novel lipopeptide poaeamide of the endophyte Pseudomonas poae RE* 1-1-14 is involved in pathogen suppression and root colonization. Molecular Plant-Microbe Interactions, 28(7), 800-810. Zaidi, A., Khan, M., Ahemad, M., & Oves, M. (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica Et Immunologica Hungarica, 56(3), 263-284. Zhang, Y. F., He, L. Y., Chen, Z. J., Wang, Q. Y., Qian, M., & Sheng, X. F. (2011). Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere, 83(1), 57-62. Zhou, J. Y., Yuan, J., Li, X., Ning, Y. F., & Dai, C. C. (2016). Endophytic bacterium-triggered reactive oxygen species directly increase oxygenous sesquiterpenoid content and diversity in Atractylodes lancea. Appl. Environ. Microbiol., 82(5), 1577-1585. Zhu, Y., & She, X. (2018). Evaluation of the plant-growth-promoting abilities of endophytic bacteria from the psammophyte Ammodendron bifolium. Canadian Journal of Microbiology, 64(4), 253-264.
|