|
1.Poeckel D, Greiner C, Verhoff M, Rau O, Tausch L, Hornig C, et al. Carnosic acid and carnosol potently inhibit human 5-lipoxygenase and suppress pro-inflammatory responses of stimulated human polymorphonuclear leukocytes. Biochemical Pharmacology. 2008; 76: 91-7 2.Yesil-Celiktas O, Sevimli C, Bedir E, Vardar-Sukan F. Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods for Human Nutrition. 2010; 66: 158-63. 3.Shin HB, Choi MS, Ryu B, Lee NR, Kim HI, Choi HE, et al. Antiviral activity of carnosic acid against respiratory syncytial virus. Virology Journal. 2013; 10: 303. 4.Tsai CW, Lin CY, Lin HH,Chen JH. Carnosic acid, A rosemary phenolic compound, induces apoptosis through reactive oxygen species-mediated p38 activation in human neuroblastoma IMR-32 cells. Neurochemical Research. 2011; 36: 2442-51. 5.Barni MV, Carlini MJ, Cafferata EG, Puricelli L, Moreno S. Carnosic acid inhibits the proliferation and migration capacity of human colorectal cancer cells. Oncology. 2012; 27: 1041-48. 6.Park SY, Song H, Sung MK, Kang YH, Lee KW, Park JH. Carnosic acid inhibits the epithelial-mesenchymal transition in B16F10 melanoma cells: a possible mechanism for the inhibition of cell migration. International Journal of Molecular Sciences. 2014; 15: 12698-713. 7.Rajasekaran D, Manoharan S, Silvan S, Vasudevan K, Baskaran N, Palanimuthu D. Proapoptotic, anti-cell proliferative, anti-inflammatory and anti-angiogenic potential of carnosic acid during 7,12 dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. African Journal of Traditional, Complementary and Alternative medicines. 2012; 10: 102-12. 8.Steiner M, Priel I, Giat J, Levy J, Sharoni Y, Danilenko M. Carnosic acid inhibits proliferation and augments differentiation of human leukemic cells induced by 1,25-dihydroxyvitamin D3 and retinoic acid. Nutrition and Cancer. 2001; 41: 135-44. 9.Visanji JM, Thompson DG, Padfield PJ. Induction of G2/M phase cell cycle arrest by carnosol and carnosic acid is associated with alteration of cyclin A and cyclin B1 levels. Cancer Letter. 2006; 237: 130-36. 10.Pesakhov S, Khanin M, Studzinski GP, Danilenko M. Distinct combinatorial effects of the plant polyphenols curcumin, carnosic acid, and silibinin on proliferation and apoptosis in acute myeloid leukemia cells. Nutrition and Cancer. 2010; 62: 811-24. 11.Kar S, Palit S, Ball WB, Das PK. Carnosic acid modulates Akt/IKK/NF-kB signaling by PP2A and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. Apoptosis. 2012; 17: 735-47. 12.Jung KJ, Min KJ, Bae JH, Kwon TK. Carnosic acid sensitized TRAIL-mediated apoptosis through down-regulation of c-FLIP and Bcl-2 expression at the post translational levels and CHOP-dependent up-regulation of DR5, Bim, and PUMA expression in human carcinoma caki cells. Oncotarget. 2015; 6: 1556-68. 13.Li, C.; Zhang, G.; Zhao, L.; Ma, Z.; Chen, H. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J. Surg. Oncol. 2016; 14: 15. 14.Garrison, J.B.; Ge, C.; Che, L.; Pullum, D.A.; Peng, G.; Khan, S.; Ben-Jonathan, N.; Wang, J.; Du, C. Knockdown of the Inhibitor of Apoptosis BRUCE Sensitizes Resistant Breast Cancer Cells to Chemotherapeutic Agents. J. Cancer Sci. Ther. 2015; 7: 121-126. 15.Youle, R.J.; Strasser, A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 2008; 9: 47-59. 16.Cheng, E.H.; Wei, M.C.; Weiler, S.; Flavell, R.A.; Mak, T.W.; Lindsten, T.; Korsmeyer, S.J. BCL-2, BCL-X (L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell. 2001; 8: 705-711. 17.Ghate, N.B.; Das, A.; Chaudhuri, D.; Panja, S.; Mandal, N. Sundew plane, a potential source of anti-inflammatory agents, selectively induces G2/M arrest and apoptosis in MCF-7 cells through upregulation of p53 and Bax’Bcl-2 ratio. Cell Death Discov. 2016; 18: 15062. 18.Cain, K. Chemical-induced apoptosis: formation of the Apaf-1 apoptosome. Drug Metab. Rev. 2003; 35: 337-363. 19.Kitagawa, k.; Niikura, Y. Caspase-independent mitotic death (CIMD). Cell cycle 2008; 7: 1001-1005. 20.Kim, D.H.; Park, K.W.; Chae, I.G.; Kundu, J.; Kim, E.H.; Kundu, J.K.; Chun, K.S. Carnosic acid inhibits STAT3 signaling and induces apoptosis through generation of ROS in human colon cancer HCT116 cells. Mol. Carcinog. 2016; 55: 1096-1110. 21.Bursch, W.; Karwan, A.; Mayer, M.; Dornetshuber, J.; Fröhwein, U.; Schulte-Hermann, R.; Fazi, B.; Di Sano, F.; Piredda, L.; Piacentini, M.; et al. Cell death and autophagy: cytokines, drugs, and nutritional factors. Toxicology 2008; 254: 147-157. 22.Fazi, B.; Bursch, W.; Fimia, G.M.; Nardacci, R..; Piacentini, M.; Di Sano, F.; Piredda, L. Fenretinide induces autophagic cell death in caspase-defective breast cancer cells. Autophagy 2008; 4: 435-441. 23.Einbond L.S.; Wu, H.A.; Kashiwazaki, R.; He, K.; Roller, M.; Su, T.; Wang, X.; Goldsberry, S. Carnosic acid inhibits the growth of ER-negative human breast cancer cells and synergizes with curcumin. Fitoterapia 2012; 83: 1160-168. 24.Ziegler, A.; Luedke, G.H.; Fabbro, D.; Altmann K,H.; Stahel, R.A.; Zangemeister-Wittke, U. Induction of apoptosis in small-cell lung cancer cells by an antisense oligodeoxynucleotide targeting the Bcl-2 coding sequence. J. Natl. Cancer Inst. 1997; 16: 1027-1036. 25.Zangemeister-Wittke, U.; Schenker, T.; Luedke, G.H.; Stahel, R.A. Synergistic cytotoxicity of bcl-2 antisense oligodeoxynucleotides and etoposide, doxorubicin and cisplatin on small-cell lung cancer cell lines. Br. J. Cancer. 1998; 78: 1035-1042. 26.Leech, S.H.; Olie, R.A.; Gautschi, O.; Simoes-Wust, A.P.; Tschopp, S.; Haner, R.; Hall, J.; Stahel, R.A.; Zangemeister-Wittke, U. Induction of apoptosis in lung-cancer cells following bcl-xL anti-sense treatment. Int. J. Cancer 2000; 15: 570-576. 27.Poliseno, L.; Mariani, L.; Collecchi, P.; Piras, A.; Zaccaro, L.; Rainaldi, G. Cancer Chemother. Pharmacol. 2002; 50: 127-130. 28.Vanhoefer U, Yin MB, Harstrick A, Seeber S, Rustum YM. Carbamoylation of glutathione reductase by N,N-bis(2-chloroethyl)-N- nitrosourea associated with inhibition of multidrug resistance protein (MRP) function. Biochemical Pharmacology. 1997; 53: 801-809. 29.Stahl W, Krauth-Siegel RL, Schirmer RH, Eisenbrand G. A method to determine the carbamoylating potential of 1-(2-chloroethyl)-1-nitrosoureas. IARC Scientific Publications. 1987; 84:191-193. 30.McGirt MJ, Than KD, Weingart JD, Chaichana KL, Attenello FJ, Olivi A, et al. Gliadel (BCNU) wafer plus concomitant temozolomide therapy after primary resection of glioblastoma multiforme. Journal of Neurosurgery. 2009; 110: 583-8. 31.Panigrahi M, Das PK, Parikh PM. Brain tumor and Gliadel wafer treatment. Indian Journal of Cancer. 2011; 48: 11-7. 32.van den Bent MJ, Brandes AA, Taphoorn MJ, Kros JM, Kouwenhoven MC, Delattre JY, et al. et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC Brain Tumor Group study 26951. Journal of Clinical Oncology. 2013; 31: 344-50. 33.van den Bent MJ, Chinot O, Boogerd W, Bravo Marques J, Taphoorn MJ, Kros JM, et al. Second line chemotherapy with temozolomide in recurrent oligodendroglioma after PCV (procarbazine, lomustine and vincristine) chemotherapy: EORTC Brain Tumor Group phase II study 26972. Annals of Oncology. 2003; 14: 599-602. 34.Green MR, Dillman RO, Horton C. Procarbazine, vincristine, CCNU, and cyclophosphamide (POCC) in the treatment of metastatic malignant melanoma. Cancer Treatment Reports. 1980; 64: 139-142. 35.Reithmeier T, Graf E, Piroth T, Trippel M, Pinsker MO, Nikkhah G. BCNU for recurrent glioblastoma multiforme: efficacy, toxicity and prognostic factors. BMC Cancer. 2010; 10: 30. 36.Tai J, Cheung S, Wu M, Hasman D. Antiproliferation effect of Rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine. 2012; 19: 436-43. 37.Jung K, Mildner D, Jacob B, Scholz D, Precht K. On the pyridoxal-59-phosphate stimulation of AST and ALT in serum and erythrocytes of patients undergoing chronic hemodialysis and with kidney transplants. Clinica Chimica Acta. 1981; 115; 105-10. 38.Wroblewski F. The clinical significance of alterations in transaminase activities of serum and other body fluids. Advances in Clinical Chemistry. 1958; 1: 313-51. 39.Dufour DR, Lott JA, Nolte FS, Gretch DR, Koff RS, Seeff LB. Diagnosis and monitoring of hepatic injury. I. Performance characteristics of laboratory tests. Clinical Chemistry. 2000; 46: 2027-49. 40.Doumas BT, Peters T. Serum and urine albumin: a progress report on their measurement and clinical significance. Clinica Chimica Acta. 1997; 258: 3-20. 41.Bonis PA, Tong PA, Tong MJ, Blatt LM, Conrad A, Griffith JL. A predictive model for the development of hepatocellular carcinoma, liver failure, or liver transplantation for patients presenting to clinic with chronic hepatitis C. The American Journal of Gastroenterology. 1999; 94: 1605-12. 42.Cortese K, Daga A, Monticone M, Tavella S, Stefanelli A, Aiello C, et al. Carnosic acid induces proteasomal degradation of Cyclin B1, RB and SOX2 along with cell growth arrest and apoptosis in GBM cells. Phytomedicine. 2016; 23: 679-85. 43.Karjalainen JM, Eskelinen MJ, Kellokoski JK, Reinikainen M, Alhava EM, Kosma VM. p21(WAF1/CIP1) expression in stage I cutaneous malignant melanoma: its relationship with p53, cell proliferation and survival. British Journal of Cancer. 1999; 79: 895-902. 44.Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & Development. 1999; 13: 1501-12. 45.Gulbis JM, Kelman Z, Hurwitz J, O’Donnell M, Kuriyan J. Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell. 1996; 87: 297-306. 46.Roy S, Singh RP, Agarwal C, Siriwardana S, Sclafani R, Agarwal R. Downregulation of both p21/Cip1 and p27/Kip1 produces a more aggressive prostate cancer phenotype. Cell Cycle. 2008; 7: 1828-35. 47.Reed SI, Bailly E, Dulic V, Hengst L, Resnitzky D, Slingerland J. G1 control in mammalian cells. Journal of Cell Science. Supplement. 1994; 18: 69-73. 48.Grana X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene. 1995; 11: 211-19. 49.Bei D, Meng J, Youan1 BC. Engineering nanomedicines for improved melanoma therapy: progress and promises. Nanomedicine (Lond). 2010; 5: 1385-99. 50.Pyrhönen S, Hahka-Kemppainen M, Muhonen T. A promising interferon plus four-drug chemotherapy regimen for metastatic melanoma. Journal of Clinical Oncology. 1992; 10: 1919-26. 51.Park SY, Song H, Sung MK, Kang YH, Lee KW, Park JHY. Carnosic Acid Inhibits the Epithelial-Mesenchymal Transition in B16F10 Melanoma Cells: A Possible Mechanism for the Inhibition of Cell Migration. Int J Mol Sci. 2014; 15: 12698–12713. 52.Egeblad M., Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer. 2002; 2: 161–174. 53.Chang C., Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol. 2001; 11: S37–S43. 54.Basset P., Okada A., Chenard M.P., Kannan R., Stoll I., Anglard P., Bellocq J.P., Rio M.C. Matrix metalloproteinases as stromal effectors of human carcinoma progression: therapeutic implications. Matrix Biol. 1997; 15: 535–541.
|