跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張詠鈞
研究生(外文):Chang,Yung-Chun
論文名稱:應用於脊髓神經訊號記錄之四通道互補式金氧半類比前端生理訊號截取電路
論文名稱(外文):The Design of a 4-Channel CMOS Analog Front-End Acquisition Circuit for ENG (Electroneurogram) Signal Recording in Spinal Cord
指導教授:吳重雨
指導教授(外文):Wu,Chung-Yu
口試委員:柯明道邱進峰
口試委員(外文):Ker, Ming-DouChiu ,Chin-Fong
口試日期:2017-04-25
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:77
中文關鍵詞:脊髓神經訊號類比前端截取電路
外文關鍵詞:ENG (Electroneurogram)Analog Front-End Acquisition Circuit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:429
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:1
由於積體電路科技的發展和醫學上的進步,人類對各種生理訊號有更進一步的了解,並且讓微小的電子醫療元件得以實現。在現今脊髓手術過程有術中監測系統,為了避免手術誤損重要神經以致半身不遂。在這些生理訊號的截取當中,類比前端放大器扮演非常重要的角色,需要能夠放大神經訊號並且減少雜訊的干擾,本篇論文主要針對脊髓神經訊號(ENG)進行量測,由於此神經訊號擁有低頻率低振幅的特性,容易受到電子元件內的閃爍雜訊影響,本篇論文使用截波調變技術來降低閃爍雜訊的干擾,並且為了降低截波調變技術產生的直流偏壓和調變雜訊等副作用,使用額外輔助電路來降低這些不理想特性,整個類比前端放大器與一已設計好的十位元差量調變逐次漸進式類比數位轉換器整合成一個類比前端系統。此系統包含四個低雜訊前端放大器、四個可程式增益放大器、一個四通道多功器、一個轉阻放大器和一個類比數位轉換器。高頻截止頻率為5K Hz,低頻截止頻率為100Hz,雜訊效率因子(NEF)為4.06,整個類比前端放大器增益為60-80dB,並有很高的線性度,功率消耗為168μW。整體類比前端的功率消耗為191.84μW,平均每個通道所消耗的功率為47.96μW,在台灣積體電路製造股份有限公司與國家晶片系統中心的幫助下,此類比前端電路晶片將以 0.18 微米製程實現。
This paper presents a 4-channel analog front-end (AFE) acquisition circuit for neural recording systems. It consists of a 4 channel analog front-end amplifier (AFEA) and 500 KS/s 10b ADC. The AFEA consists 4 analog front-end blocks, a 4-to-1 multiplexer, a trans-impedance amplifier (TIA). Each of the analog blocks in AFEA is implemented a capacitively coupled chopper instrumentation amplifier (CCCIA) and a programmable transconductance gain amplifier (PTGA). It is designed for amplification, filtering, and converting to digital signals of biopotential signals, these biopotential signals have the characteristics of small amplitudes and low frequency.
The AFEA acquisition circuit which is fabricated in TSMC 0.18μm CMOS process can adjust gain at three steps (60/68/78dB), the high-pass corner can achieve as low as 100Hz and low-pass corner can achieve 5KHz. The input-referred noise of the AFEA is 1.86μVrms. The noise efficiency factor is 4.06 of CCCIA. The whole AFE acquisition circuit power consumption is 191.84μW where 47.96μW per channel.
摘要 ................................ ................................ ............................... II
Abstract ................................ ................................ ........................ III
Acknowledgements ................................ ................................ ...... IV
Contents ................................ ................................ ........................ V
Figure Captions ................................ ................................ .......... VII
Table Captions ................................ ................................ ................................ .............. X
Chapter1 Introduction ................................ ................................ ................................ .... 1
1.1 Background ..................................................................................................................... 1
1.2 Review on Analog Front-End Amplifiers ....................................................................... 4
1.3 Motivation ..................................................................................................................... 10
1.4 Main Results and Thesis Organization .......................................................................... 11
Chapter2 Circuit Design and Simulation Results ................................ ........................ 12
2.1 Design Consideration .................................................................................................... 13
2.2.1 Capacitively Coupled Chopper Instrumentation Amplifier (CCCIA) .................... 16
2.2.2 Programmable Transconductance Gain Amplifier(PTGA) and Multiplexer[6] ..... 30
2.2.3 Transimpedance Amplifier (TIA) [6] ..................................................................... 32
2.2.4 A Rail to Rail Input/Output Buffer[14] .................................................................. 35
2.2.5 A 10b Delta-Modulated SARADC [15] ................................................................. 36
2.3 Post-Simulation Results................................................................................................. 40
Chapter 3 Experimental Results................................ ................................ ................... 45
3.1 Chip Layout Descriptions .............................................................................................. 45
3.2.1 Measurement Setup .................................................................................................... 46
3.2.2 Measurement Results.................................................................................................. 53
3.2.3 Commercial Instrument Measurement Results ........................................................... 63
3.2.4 Experimental Results .................................................................................................. 66
3.3 Discussion of AFE acquisition circuit ........................................................................... 68
Chapter 4 Conclusions and Future Work ................................ ................................ ..... 70
VI
4.1 Conclusions ................................................................................................................... 70
4.2 Future Work .................................................................................................................. 71
References ................................ ................................ ................................ .................... 72
Appendix ................................ ................................ ................................ ...................... 74
Affidavit of Approval of Animal Use Protocol ................................................................... 74
[1] H.-J. Yoo and C. V. Hoof, Bio-Medical CMOS ICs. New York, NY, USA: Springer, 2011, ch4.
[2] K. Limnuson, D. J. Tyler, and P. Mohseni, "Integrated electronics for peripheral nerve recording and signal processing,“ IEEE Engineering in Medicine and Biology Society (EMBS), 2009, pp. 1639-1642.
[3] R. R. Harrison, C. Charles, "A low-power low-noise CMOS amplifier for neural recording applications," IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958- 965, June 2003.
[4] A. Demosthenous et al., “An integrated amplifier with passive neutralization of myolectric interference from neural recording tripoles, ” IEEE Sensors, vol. 13, no. 9, pp. 3236–3248, 2013.
[5] S. E. Paraulou et al., “A Low-Noise Instrumentation Amplifier with DC Suppression for Recording ENG Signals,” Proc. IEEE Engineering in Medicine and Biology Society (EMBS), 2015, pp. 2693–2696.
[6] W.-M. Chen et al., "A fully integrated 8-channel closed-loop neural-prosthetic SoC for real-time epileptic seizure control," IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2013, pp. 286-287.
[7] J. Yoo, LongYan, Dina El-Damak, Muhammad Awais Bin Altaf, Ali H. Shoeb, and Anantha P. Chandrakasan, “An 8-channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 214-228, Jan. 2013.
[8] J. Rmírez-Angulo, R. G. Carvajal, J. A. Galán, and A. López-Martín, “A free but efficient low-voltage class-AB two-stage operational amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 7, pp.568–571, Jul. 2006.
[9] M. Daliri and M. Maymandi-Nejad, “Ultra-low voltage common-mode voltage detector circuit,” Electron. Lett., vol. 44, no. 13, pp. 782-783, 2008.
[10] X. Jiawei, R. F. Yazicioglu, B. Grundlehner, P. Harpe, K. A. Makinwa, and C. Van Hoof, “A 160µW 8-channel active electrode system for EEG monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 555-567, Dec. 2011.
[11] C.-C. Liu, Che-Hsun Kuo and Ying-Zu Lin. “A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2645-2654, Nov. 2015.
[12] Q. Fan, F. Sebastiano, J. H. Huijsing, and K. A. A. Makinwa, “A 1.8 µW 60 nV/rtHz capacitively-coupled chopper instrumentation amplifier in 65nm CMOS for wireless sensor nodes,” IEEE J. Solid-State Circuits, vol. 46, pp. 1534-1543, Jul. 2011.
[13] Y. Tsividis and Colin McAndrew, Operation and Modeling of the MOS Transistor, 3rd ed. Oxford University Press, 2011, ch9.
[14] R. Hogervorst, J. P. Tero, R. G. H. Eschauzier and J. H. Huijsing, “A Compact Power-Efficient 3 V CMOS Rail-to-Rail Input/Output Operational Amplifier for VLSI Cell Libraries,” IEEE J. Solid-State Circuits, vol. 29, no. 12, pp. 1505- 1513, Dec. 1994.
[15] Y. F. Lyu, C. Y. Wu, and L. C. Liu, “A low power 10bit 500kS/s delta-modulated SAR ADC (DMSAR ADC) for implantable medical devices,” in Proc. IEEE Int. Symp. Asynchronous Circuits Systems, May. 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 應用於植入式生醫元件之互補式金氧半13.56-MHz高效率主動式一/三倍壓整流器和低壓降穩壓器之設計
2. 應用於下視網膜植入具光伏特電池及分區供電之180奈米互補式金氧半256像素感測及雙向刺激晶片設計
3. 應用於生醫訊號記錄系統具截波調變之十六通道 互補式金氧半類比前端生理訊號截取電路
4. 應用於腦電訊號紀錄具載波調變放大器與差動混和型逐次漸進式類比數位轉換器之六十五奈米互補式金氧半八通道類比前端電路設計
5. 應用於腦電訊號記錄之互補式金氧半八通道電流訊號類比前端放大電路
6. 應用於帕金森症閉迴路深部腦刺激具雜訊去除電路之四通道互補式金氧半類比前端放大器設計
7. 應用於植入式生醫元件之互補式金氧半13.56-MHz高效率主動式二/三倍壓整流器和低壓降穩壓器之設計
8. 應用於人體癲癇與帕金森氏症治療之互補式金屬氧化物半導體積體電路系統單晶片與閉迴路神經調控系統設計
9. 應用於植入式人工耳蝸之13.56-MHz互補式金氧半電感耦合電源與晶片系統設計與分析
10. 應用於下視網膜植入具電荷泵升壓電路之四向共用電極180奈米互補式金氧半480像素感測及雙向電流刺激晶片設計
11. 應用於腦電訊號記錄之六十五奈米互補式金氧半八通道具截波調變技術類比前端電路
12. 應用於神經訊號記錄之六十五奈米互補式金氧半八通道類比前端電路
13. 應用於下視網膜植入具電荷泵升壓電路之雙向共用電極180奈米互補式金氧半256像素感測及雙向電流刺激晶片設計
14. 用於量測頭髮部位腦電訊號之主動式梳狀乾電極之研究
15. 用於植入式生醫晶片系統整合之低功率十位元/十二位元每秒十萬次取樣混合型/電容分裂型逐次漸進式類比數位轉換器與電極組織阻抗量測電路