壹、中文部份:
丁信中、洪振方、楊芳瑩(2001)。科學理論形成與精煉過程對科學學習的意涵。科學教育月刊,240,2-13。九章出版社(譯)(1990)。數學發現(原作者:G. Polya)。臺北:九章出版社。(原著出版年:1989)
于富雲(2001)。從理論基礎探究合作學習的教學效益。教育資料與研究,38,22-28。中小學數學教師培育跨國研究(2017年7月2日)。科學教育研究資料庫【網路資料】。取自http://www.dorise.info/DER/05_TEDS-M/index.html
支紹慈(2006)。電子工程問題的數學解題能力模式之研究-以科技大學為例(未出版之碩士論文)。國立臺灣師範大學,臺北。方祖同(譯)(1984)。新數學為何失敗(原作者:莫里斯.克蘭因)。臺北:科學月刊社。(原著出版年:1973)
方祖同(譯)(1993)。教授為何教不好(原作者:莫里斯.克蘭因)。臺北:科學月刊社。(原著出版年:1977)
王文科、王智弘(2008)。教育研究法。臺北:五南。
王文科、王智弘(譯)(2002)。質的教育研究-概念分析(原作者:J. H. McMillan & S. Sally)。臺北:師大書苑。(原著出版年:1994)
王婷瑩(2004)。高中生數學學習歷程中之思維研究-多項式除法原理、餘式定理、因式定理(未出版之碩士論文)。國立臺灣師範大學,臺北。王憲鈿(譯)(1989)。發生認識論原理(原作者:J. Piaget)。北京:商務印書館。(原著出版年:1970)
王蘇、汪安聖(1992)。認知心理學。北京:北京大學出版社。
行政院教育改革審議委員會(1996)。總諮詢報告書【網路資料】。取自http://www.sinica.edu.tw/info/edu-reform/farea2/176
伍振鷟、林逢祺、黃坤錦、蘇永明(1998)。教育哲學。臺北:五南。
朱新明、李亦菲(2000)。架設人與計算機的橋樑:西蒙的認知與管理心理學。湖北:湖北教育出版社。
何仕仁、黃台珠(2005)。不同教學、知識創新管理模式對國中生數學學習成效之影響研究。科學教育月刊,13(2),217-239。
何鳳珠(2011)。國小高年級數學低成就學生補救教學成效之探究【網路資料】。取自:http://ceag.tn.edu.tw/modules/ceag/teach.php?TeamID=8&NewsID=561
吳宏志(譯)(1994)。教育的目的(原作者:A. N.Whitehead)。臺北:桂冠。(原著出版年:1916)
吳欣隆、黃詠光、顏寧(譯)(2009)。建構紮根理論(原作者:C. Kathy)。臺北:五南。(原著出版年:2006)
吳芝儀、廖梅花(譯)(2001)。質性研究入門:紮根理論研究方法(原作者:A. Strauss & J. Corbin)。嘉義:濤石。(原著出版年:1998)
吳思慧、邱守榕(2005)。以電腦代數系統(CAS)輔助微積分學習之研究:以單變數函數的極限為例。中華民國第二十一屆科學教育學術研討會發表之論文,國立彰化師範大學。
宋玉如(2008)。中學數學教師應有的數學教學特質研究—學生觀點(未出版之碩士論文)。國立臺灣師範大學,臺北。李心煽、王日爽、李日堯(譯)(1992)。數學與猜想(原作者:G. Polya)。臺北:九章出版社。(原著出版年:1954)
李坤章(2008)。國民中學學生學習差異之研究-以彰化縣偏遠及市鎮學校為例(未出版之碩士論文)。大葉大學,彰化。李長燦(2003)。「近側發展區」概念的新詮釋及其對幼兒教育的啟示。幼兒保育學刊,1,1-18。汪益(2004)。Let`s Excel!獨家剖析。臺北:樂學。
汪益(2007)。邏輯訓練。臺北:學貫。
岳修平(譯)(1998)。教育心理學-學習的認知基礎(原作者:E. D. Gagne, C. W. Yekovich, & F. R. Yekovich)。臺北:遠流出版社。(原著出版年:1993)
林基興(2005)。閱讀力-收集、解讀、思考、判斷能力的源頭。臺北:如何出版社。
林清山(1998)。教育心理學。臺北:遠流出版社。
林清山(譯)(1997)。教育心理學-認知取向(原作者:R. E. Mayer)。臺北:遠流出版社。(原著出版年:1987)
林清山、張景媛(1993)。國中生後設認知、動機信念與數學解題策略關係之研究。教育心理學報,26,53-74。
林寶貴、錡寶香(1992)。高職階段聽障學生學習態度、成就動機及其學業成就之相關研究。特殊教育學刊,8,17-32。
邱守榕(1979)。正視數學教育的問題-從教育目標談到教師的使命。人與社會,7,4。邱守榕(1986)。師資教育。行政院國家科學委員會數學教育部門規劃資料。臺北:行政院國家科學委員會。
邱守榕(1988)。數理師資教育研究之興與變。第三屆科學教育學術研討會發表之論文,國立彰化師範大學。
邱守榕(1992)。關於數學學習研究。科學發展月刊,20,571-584。邱守榕(1996)。建構教學:數學教育的全民化。建構與教學,8,1-4。邱守榕、汪益、曾旭堯(2008)。推理活動的教學研究-數理科學習整合。行政院國家科學委員會專題研究計畫(編號:NSC96-2521-S-018-001)。彰化:國立彰化師範大學。
邱守榕、黃鴻博、梁崇惠、陳正賢(1999)。數學教學活動設計與表演賽推廣手冊。彰化:國立彰化師範大學。
邱守榕、黃鴻博、梁崇惠、陳正賢(2001)。數學活動推廣手冊。彰化:國立彰化師範大學。
邱守榕主編(1996)。數學教育學門資源整合規劃資料。臺北:行政院國科會。
施皓耀(2015)。數學新世界教師種子生根計畫。教育部補助計畫,未出版。
段曉林(1996)。學科教學知識對未來科教師資培育上的啟示。數理教學及師資培育學術研討會發表之論文,國立彰化師範大學。
范育文(2010)。電腦融入圖示策略對國小數學成就低落學生整數乘除法應用題之學習成效(未出版之碩士論文)。國立臺北教育大學,臺北。張小萍(2004)。使用全方位設計對普通班數學低成就學童進行數概念補救教學之效果研究(未出版之碩士論文)。國立臺北教育大學,臺北。張春興(1996)。教育心理學─三化取向的理論與實踐。臺北:東華書局。
張家生、伍宇文(譯)(1989)。如何精進數學技巧(原作者:Daniel Solow)。臺北:第三波。(原著出版年:1984)
張新仁主編(2003)。學習與教學新趨勢。臺北:心理出版社。
教育部(2008 年11 月1 日)。教育施政藍圖(98-101 年)【網路資料】。取自www.ymhs.tyc.edu.tw/principal/WebPage/教育施政藍圖(98-101 年).htm
教育部(2009 年10 月10 日)。國民中小學九年一貫課程綱要【網路資料】。取自http://teach.eje.edu.tw/9CC/index_new.php
教育部(2009 年10 月30 日)。97 年度教育部教學卓越獎複選審查實施計畫【網路資料】。取自http://www.zlsh.tp.edu.tw/onweb.jsp?webno=3333333:57
曹一鳴(2003)。數學實驗教學模式探究。課程‧教材‧教法,1,46-48。
郭素珍(1982)。比率概念暨學童認知發展關聯之研究。教育學院學報,8,547-592。郭蕙琳(2002)。緣數學史探討數學學習中的情意與信念(未出版之碩士論文)。國立彰化師範大學,彰化。陳正明(2003)。合作學習動態分組策略(未出版之碩士論文)。中原大學,桃園。陳正明(2003)。透過Excel輔助進行線型函數補救教學之研究:以一個國二學生為例(未出版之碩士論文)。國立臺灣師範大學,臺北。陳正賢(1990)。職前教師數學解題情意因素之研究(未出版之碩士論文)。國立彰化師範大學,彰化。陳瓊森、汪益(譯)(2001)。超越教化的心靈(原作者:H. Gardner)。臺北:遠流出版社。(原著出版年:1991)
傅鸝、龔劬、劉瓊蓀、何中市(2000)。數學實驗。北京:科學出版社。
黃志賢(2003)。數學低成就學生的補救教學【網路資料】。取自
http://163.17.203.129/hand/07-Read/S-TEXT/數學低成就學生的補救教學.pdf.
黃淑君(2003)。國小學童聽覺理解能力與閱讀理解能力之相關研究(未出版之碩士論文)。國立臺中教育大學,臺中。黃淑華(2003)。高中生複數學習歷程中之數學思維研究(未出版之碩士論文)。國立臺灣師範大學,臺北。黃道(譯)(1990)。心理學與認識論-一種有關知識的理論(原作者:J. Piaget)。臺北:結構群文化事業有限公司。(原著出版年:1972)
黃毅英(1997)。邁向大眾數學的數學教育。臺北:九章出版社。
萬福永、戴浩暉(2003)。數學實驗教程。北京:科學出版社。
詹玉貞(2000)。波利亞的解題步驟對國中數學資優生學習幾何證明成效之研究(未出版之碩士論文)。國立臺灣師範大學,臺北。靳建國(譯)(1991)。教育論(原作者:羅素)。臺北:遠流。(原著出版年:1917)
管公度(1951)。中等數學教育的改造是時候了。教育輔導月刊,1(6)。
劉湘川(2004)。知識結構有向圖形類似度改進指標。測驗統計年刊,12,193-210。劉湘川(2006)。試題結構模式之評估指標。劉湘川試題反應理論講義。亞洲大學,臺中。
劉湘川(2007a)。標準規格化多點計分順序理論。測驗統計年刊,15,1-12。
劉湘川(2007b)。具動態閾值之廣義多點計分。劉湘川試題反應理論講義。亞洲大學,臺中。
劉湘川、陳繁興、陳泉源、郭素珍(2012)。基於Q 矩陣理論之試題順序理論及其應用—以特殊學校分數加法為例。第13 屆提昇技職學校經營品質研討會發表之論文,國立彰化師範大學。
劉湘川、簡茂發(2006)。多點計分順序理論。第七屆兩岸心理與教育測驗學術研討會發表之論文,國立政治大學。
鄭百恩(2007)。Excel輔助微積分學習之教學實驗研究(未出版之碩士論文)。國立彰化師範大學,彰化。鄭百恩、汪益、邱守榕(2006)。在Excel環境中數學推理之分析。中華民國第二十二屆科學教育學術研討會發表之論文,國立臺灣師範大學。
蕭富元(2007)。芬蘭教育世界第一的秘密。天下雜誌,384,72-77。
閻育蘇(譯)(1999)。怎樣解題(原作者:G. Polya)。臺北:九章出版社。(原著出版年:1957)
謝哲仁(2003)。從可操作動態視覺化基本函數之微分設計談動態微積分新的學習方法。數學傳播季刊,27(3),79-85。謝豐瑞(2012)。國高中數學教學專業知能指標。中等教育季刊,63,3。
謝豐瑞主編(2012)。臺灣數學師資培育跨國研究Taiwan TEDS-M 2008。臺北:國立臺灣師範大學。
鍾啟泉、徐斌耙(2003)。數學課程與教學論。浙江:浙江教育出版社。
羅驥韡、許舜淵、彭建勛、呂鳳琳、胡政德、左台益(譯)(2009)。GeoGebra 版本3.2 使用說明【網路資料】(原作者:M. Hohenwarter & J. Hohenwarter)。取自http://www.geogebra.org(2012 年1 月2 日)
蘇耿進(2005)。利用Excel 設計之活動進行國二應用問題補救教學之個案研究(未出版之碩士論文)。國立高雄師範大學,高雄。貳、英文部分:
Airasian, P. W., & Bart, W. M. (1973). Ordering theory: A new and useful measurement model. Journal of Education Technology, 5, 56-60.
Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245-274.
Berk, L. E. (1994). Vygotsky theory: The importance of make-believe play. Young Children, 50(1), 30-39.
Berk, L. E., &Winsler, A. (1995). Scaffolding Children’s Learning: Vygotsky and Early Childhood Education. Washington, DC: National Association for the Education of Young Children.
Breeden, T., & Mosley, J. (1992). The cooperative learning companion. Nashville, Tenn.: Incentive Publications.
Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer Academic Publishers.
Brown, P., Friedrichsen, P., & Abell, S. (2009). Teachers' knowledge of learners and instructional sequencing in an alternative certification program. Annual meeting of the American Educational Research Association, San Diego, CA.
Brown, S. I., Cooney, T. J., & Jones, D. (1990). Mathematics teacher education. In W.R. Houston(Ed.). Handbook of Research on Teacher Education. NY: Macmillan.
Bruner, J. S. (1960). The process of education. Cambridge, MA: Harvard University Press.
Bruner, J. S. (1966 ). Towards a theory of instructions in mathematics. Mass: Harvard University Press.
Cobb, P., & Bauersfeld, H. (1995). Introduction: The coordination of psychological and sociological perspectives in mathematics education. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning : Interaction in Classroom Cultures. (pp. 1-16). Hillsdale, NJ: Lawrence Erlbaum Associates.
Cochran, K. F., DeRuiter, J. A., & King, R. A. (1993). Pedagogical content knowledge: An integrative model for teacher preparation. Journal of Teacher Education, 44(4),268.
Cockcroft, W. H. (1980). Mathematics conunts. London: Her Majesty’s StationeryOffice.
Davis, P. J., & Hersh, R. (1980). The mathematical experience. Boston: Birkhauser.
DeRuiter, J. A. (1991,April). The development of teachers, pedagogical content knowledge. Paper presented at the annual meeting of the American Educational Research Association,Chicago.
Desimone, L. M. (2009). Improving impact studies of teachers’ professional development:Toward better conceptualizations and measures. Educational Researcher, 38(3), 181-199.
Dewey, J. (1910). How we think. Boston: D.C. Heath & Co.
Dyson, A. (1990). Special educational needs and the concept of change Oxford Review of Education. 16(1), 55-66.
Fennema, E., & Franke, M. U. (1992). Teachers’ knowledge and its impact. In Grouws, D. A. (Ed.), Handbook of research on mathematics teaching and learning(pp.147-164). NY: MacMillan.
Fishman, J. J., Marx, R. W., Best, S., & Tal, R. T. (2003). Linking teacher and studentlearning to improve professional development in systemic reform. Teaching andTeacher Education, 19, 643-658.
Freudenthal, H. (1981). Major problems of mathematics education. Educational Studiesin Mathematics, 12.
Gagné, R. M. (1985). The conditions of learning and theory of instruction, (4th ed.).NewYork, NY: Holt, Rinehart, and Winston.
Gardner, H. (1991). The unschooled mind: how children think and how schools shouldteach. NY: Basic Books.
Greeno, J. (1987). Instructional representations based on research about understanding.In A. H. Schoenfeld (Ed.) Cognitive Science and Mathematics Education (pp.61-88). Hillsdale, NJ: Lawrence Erlbaum Associates.
Griffin, S., Case, R., & Sandieson, R. (1992). Synchrony and asynchrony in theacquisition of children’severyday mathematical knowledge. In R. Case (Ed.), The Mind’s Staircase: Exploring the Conceptual Underpinnings of Children’s Thought and Knowledge (pp.75-97). Hillsdale, NJ: Lawrence Erlbaum Associates.
Harskamp, E., & Suhre, C. (2007). Schoenfeld’s problem solving theory in a student controlled learning environment. Computers & Education, 49, 822-839.
Hart, K. M. (1980). A report of the mathematics component of the CMSM Programme. C. S. E. Chelsea College, University of London.
Hendrix, J. C. (1996). Cooperative learning: Building a democratic community. The Clearing House, 69(6), 333-336.
Hersh, R. (1997). What is mathematics, really? NY: Oxford University Press.
Hiele, P. M. van (1986). Structure and insight: A theory of mathematics education. Orlando, FL: Academic Press.
Hoffer, A. (1981). Geometry is more than proof. Mathematics teacher, 74(1), 11-18.
Hogan, K., & Pressley, M. (1997). Scaffolding student instruction. Cambridge, MA: Brookline Books.
Inagaki, K., & Hatano, G. (1993). Young children's understanding of the mind‐body distinction. Child development, 64(5), 1534-1549.
Johnson, D. W., & Johnson, R. T. (1991). Joining together: Group theory and group skills (4th Ed.). Englewood Cliffs, NJ: Prentice Hall.
Jonassen, D. H. (1996). Computers as mindtools for schools: engaging critical thinking(2th Ed.). NJ: Prentice-Hall.
Jonassen, D. H., Beissner, K., & Yacci, M. (1993). Structural knowledge. Techniques for Representing, Conveying, and Acquiring Structural Knowledge. Hillsdale, NJ: Lawrence Erlbaum.
Kaput, J. J. (1986). Information technology and mathematics: opening new representational windows. The Journal of Mathematical Behavior, 5(2), 187-207.
Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.
Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children. Chicago: University of Chicago Press.
Langer, J. A., & Applebee, A. N. (1983). Instructional scaffolding: Reading and writing as natural language activities. Language Arts, 60, 168-175.
Lee, L. (1996). An initiation into algebraic culture through generalization activities. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to Algebra: Perspectives for Research and Teaching(pp. 87-106). Boston, MA: Kluwer.
Leighton, J. P., Gier, M. J., & Hunka, S. M. (2004). The attribute hierarchy method for cognitive assessment: a variation on Tatsuoka's rule space approach. Journal of Educational Measurement, 41(3), 205-237.
Lerner, J. (2003). Learning disabilities: Theories, diagnosis, and teaching strategies (9th Ed.). Boston: Houghton Mifflin.
Lesh, R., Post, T., & Behr, M. (1987). The role of representational translations in proportional reasoning and rational number concepts. In C. Janvier (Ed.). Problems of representation in matheatics learning and problem solving. Hillsdale, NJ: Lawrence Erlbaum Associates.
Lin, Y. H., Bart, W. M., & Huang, K. J. (2006). WPIRS . Software . [manual . and software for generalized scoring of item relational structure]. Taiwan, National Taichung University, Taichung City, Taiwan.
Linn, M. C., & Burbules, N. C. (1993). Construction of knowledge and group learning. The practice of constructivism in science education, 91-119.
Liu, H. -C., Wu, S. N., & Chen, C. C. (2011). Item relational structure algorithm based on empirical distribution critical value, Journal of Software, 6(11), 2106-2113.
Liu, H.-C. (2012). A novel validity index for evaluating the item ordering structure based on Q-matrix theory, in proceeding of 2nd International Conference on Mechatronics and Materials Engineering (ICMME 2012) .
Liu, H.-C., Kuo, H.-c. & Tsai, H.-C.(2013). Improving Item Relational Structure Theory Based on a Novel D-Matrix Theory, in Proceeding of The 2013 International Conference in Management Sciences and Decision Making.
Lock, A. (2000). Human nature, learning and mind. 75202. Lecture 17: Vygotsky. Available at http://www.massey.ac.nz/~i75202
Mayer, R. E. (1987). Educational psychology: A cognitive approach. Boston, MA.: Little. Brown.
Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for integrating technology in teachers’ knowledge. Teachers College Record, 108(6), 1017–1054.
Moll, L. C. (1990). Vygotsky and education: Instructional implications and applications of sociohistorical psychology. Cambridge: Cambridge University Press.
Moore, R. C. (1994). Making the transition to formal proof. Educational studies in mathematics, 27, 249-266.
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, Va. NCTM.
National Council of Teachers of Mathematics. (NCTM,1991). Professional standards for teaching mathematics. Reston, Va: Author.
National Research Council (1989). EVERYBODY COUNTS. Washington , DC: National Academy Press.
Olsen, R. E. W. B., & Kagan, S. (1992). About cooperative learning. Cooperative language learning: A teacher’s resource book, 1-30.
Olsen, R. E. W-B., & Kagan, S. (1992). About cooperative learning. In C, Kessler (Ed.), Cooperative language learning : A teacher’s resource book (pp.1-30). NJ: Prentice-Hall Regents.
Organisation for Economic Cooperation and Development(OECD) (2003). International outcomes of learning in mathematics literacy and problem solving. National Center for Education Statistics.
Piattelli-Palmarini, M. (1980). Language and learning: The debate bBetween Jean Piaget and Noam Chomsky. Cabbridge, MA:Havard University Press.
Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.
Polya, G. (1957). How to solve it. NY: Doubleday.
Reber, A. S. (1993). Implicit learning and tacit knowledge: A essay on the cognitive unconscious. Oxford: Oxford UP.
Roger, B. (1988). The development of language and language researchers. NY: Amoazon.
Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando: Academic Press.
Schoenfeld, A. H. (1987). Cognitive science and mathematics education. Hillsdale, NJ: Lawrence Erlbaum.
Schoenfeld, A. H. (1992). Learning to think mathematically: problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of Research on Mathematics Teaching (pp. 334–370). New York: MacMillan Publishing.
Senk, S. L. (1985). How well do students write geometry proofs? The Mathematics Teacher, 78 (6), 448-456.
Senk, S. L. (1989). Van Hiele levels and achievement in writing geometry proofs. Journal for Research in Mathematics Education, 20, 309–321.
Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-22.
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.
Silver, E., Kilpatrick, J., & Schlesinger, B. (1990). Thinking through mathematics: Fostering inquiry and communication in mathematics classrooms. College Entrance Examination Board, NY.
Skemp, R. R. (1987). The psychology of learning mathematics. NJ: Lawrence Erlbaum Associates.
Slavin, R. E. (1995). Cooperative Learning and Intergroup Relations. In J. Banks, & C. M. Banks (Eds.), Handbook of Research on Multicultural Education (pp. 628-634).New York: Macmillan.
Slavin, R. E. (1995). Cooperative learning: Theory, research, and practice (2nd ed.) Boston: Allyn & Bacon.
Sosniak, L. A., & Stodolsky, S. S. (1993). Teachers and textbooks: Materials use in four fourth-grade classrooms. The Elementary School Journal, 93(3), 249-275.
Sriskanda, N. (2003). Using excel spreadsheet to understand the limiting value of a sequence. In P. Bogacki, E. D. Fife, & L. Husch, the Sixteenth Annual International Conference on Technology in Collegiate Mathematics, Chicago.
Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In R. A. Lesh & A. E. Kelly (Eds.), Research design in mathematics and science education (pp. 267-307). Hillsdale, NJ: Erlbaum.
Steffe, L., & D' Ambrosio, B. S. (1996). Using teaching to enhance understanding of students’ mathematics. In D. F. Treagust, R. Duit & B. F. Fraser(Eds.). Improving teaching and learning and learning in science and mathematics. New York: Teachers College Press.
Takeya, M. (1980). Construction and utilization of item relational structure graphs for use in test analysis. Japan Journal of Educational Technology, 5, 93-103. (in Japanese)
Takeya, M. (1991). New item structure theorem. Tokyo: Waseda University.
Tatsuoka, K. K. (1983). Rule space: an approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20(4), 345-354.
Usiskin, Z., (1982). Van Hiele levels and achievement in secondary school geometry, University of Chicago.
Vygoysky, L. S. (1978). Mind in society: The development of higher psychological processes. Cabbridge, MA:Havard University Press.
Wain, G. T., & Woodraw, D. (Eds.). (1980). Mathematics Teacher Education Project, Tutor’s Guide. London: Blackie & Son.
Wang, T. (2002). The basic concept of cooperative learning. Education Studies, 2.
Wang,T. (2002) The Concept of Cooperative Learning and Implementation. Beijing: China Human Resources and Social Security Publishing.
Webb, N. M., & Palincsar, A. S. (1996). Group processes in the classroom. Prentice Hall International.
Weinstein , C. E., & Mayer, R. E. (1985). The teaching of learning strategies, In Handbook of teaching. 3rd Ed., in M. C. Whittrock (Ed.), New York: Macmillan.
Wilson, K. (2004). Spreadsheet generalizing and paper and pencil generalizing. Proceedings of the 28th conference of the International group for the Psychology of Mathematics Education.
Wood, D. J., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry. 17.
竹谷 誠 (1980)。IRS テスト構造法と活用法。日本教育工學会誌,5,93-103。