跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭素珍
研究生(外文):Guo,Sue-Jane
論文名稱:高職數學低成就生坐標平面上直線的學習與理解 —數學認知的研究
論文名稱(外文):The Learning and Understanding of the Straight Line on the Cartesian Plane -A Study in Mathematical Cognition Among Vocational High School Low Achievers
指導教授:邱守榕邱守榕引用關係
指導教授(外文):Chiu, Sou-Yung
口試委員:羅昭強汪益王國華施皓耀邱守榕
口試委員(外文):Law, Chiu-KeungWong, YiWang, Kuo-HuaShy, Haw-YawChiu, Sou-Yung
口試日期:2017-07-11
學位類別:博士
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:323
中文關鍵詞:高職低成就生直線的學習與理解解題模式教學實驗
外文關鍵詞:Vocational High SchoolLow Achievers in MathematicsLearning and Understanding of Straight Line on Cartesian PlaneProblem-Solving Teaching Experiment Model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討數學低成就生在學習坐標平面上直線的學習與理解,針對學生的錯誤知識表徵發展學習單,並進行解題模式教學實驗,以評量低成就生的學習成效與進步情形。本研究採多元研究法,先以調查法,利用自編直線斜率與方程式測驗量表,邀請某甲高職一般班級(N=45)以及低成就班級(N=43),共計88 位學生
進行前測,分析學生學習的知識表徵與錯誤類型,藉以發展符合低成就生學習的解題模式學習單;接著針對選取數學低成就班級24 位學生,進行為期四週的解題模式教學實驗,針對學生坐標平面上直線的學習所呈現的知識表徵,發展解題歷程,其歷程包括教材編排、教學設計、解題鷹架策略,以合作學習模式,引領學生完整地
把問題解決出來,藉以開啟學生數學學習之鎖,實驗完成後進行後測評量,以相依樣本t 考驗分析低成就生的學習成效;另外透過晤談法及教室觀察,收集質性資料,包括學生的學習單和晤談資料等進行分析,以強化詮釋研究結果。
本研究結果如下:
1. 43 位高職低成就生實施直線斜率與方程式前測時,坐標平面上直線的錯誤知識表徵包括:對直線斜率的公式計算容易產生混亂不清的現象,不清楚斜率的定義,產生錯誤的認知概念;在直線方程式方面,經常出現看不懂題意,無法利用已知條件來嘗試求解;在直線應用題方面,未具備綜合能力的認知概念來正確解題。
2. 藉由象棋學習單的引導,學生在先備知識―直角坐標的建立完成率達九成五,具備瞭解平面直角坐標的意義。
3. 解題模式教學實驗前,發現低成就生對直線方程式的概念尚保留在國中階段的先備概念,未能活用於其他應用題上,但經過教學實驗後,學生的認知發展與解題思維已明顯地轉化。
4. 24位低成就生,經解題模式教學實驗後,其前後測達顯著差異,顯示本實驗教學具成效。
5. 研究者的省思與專業成長,教學要有良好成效,教師須先了解學生的知識表徵,以及錯誤概念(迷思概念),以不同的方式如鷹架學習單、合作學習等,來組織安排教學活動,以學生為解題教學的主角,如此一來才能真正喚醒學生對學習數學的興趣,對症下藥,必能達事半功倍之效。
The purposes of this study was to explore the learning and understanding of the straight line on the Cartesian plane of Low Achievers in Vocational senior high school. A teaching material was developed according to the low achievers' error knowledge representaions, and a problem-solving teaching experimental mode was implemented to evaluate the low achievers learning outcome ane improvements. The pretest and posttest
experimental teaching was employed, and evaluated the learning achievement and progress of low achievement.
Multiple research methods were employed in this study. First, 88 normal students (N= 45) and low achievers (N = 43) from the vocational senior high school were surveyed in a pretest that used a self-developed slope and linear equation scale. The pretest results were analyzed the students’ knowledge representations and the types of mistakes they made, that to develop a problem-solving checklist suitable for helping the learning of low achievers. Subsequently, a 4-week problem-solving experimental teaching was implemented with 24 low achievers in mathematics. The developed problem-solving process was based on the students’ knowledge representation of linear equations in the Cartesian Plane. The process comprised syllabus arrangement, instructional design, and
instructional scaffolding strategies. A cooperative learning model was employed to facilitate the students’ problem solving and lower their barriers to learning in the subject of mathematics. Aposttest was conducted after the experiment, and the low achievers’ learning outcomes were analyzed using a pair t test. Through face-to-face interviews and
classroom observation, this study also collected qualitative data including the students’learning checklists and interview data, which aided further interpretation of the research conclusions.
The research conclusions of this study are described as follows:
1. During the pretest, the 43 low achievers had the following error knowledge representations of linear equations in the Cartesian Plane: (a) confusion over slope calculation for a straight line and difficulty understanding the definition of slope, resulting in incorrect cognitive concepts; (b) difficulty understanding the meaning of a problem and an inability to solve linear equations using known conditions; and (c) a
lack of comprehensive mathematic skills and cognitive concepts that would enable them to solve linear equation word problems.
2. With the guidance of a Chinese chess learning list, the students attained a 95% completion rate in prior knowledge on Cartesian Plane and understood the two-dimensional coordinate system.
3. Before the problem-solving experimental teaching, the research staff found that the low achievers’ prior knowledge on linear equations were still limited to that knowledge acquired in junior high school and that the students could not apply the concepts to other word problems. However, the cognitive development and problem-solving skills of the students were found to be substantially transformed after the experimental
teaching.
4. The 24 low achievers’ pretest and posttest scores were significantly different, indicating the effectiveness of the experimental teaching.
5. According to the researchers’ reflection and professional growth during and after the experiment, the following conclusion was derived. To facilitate excellent teaching outcomes, teachers must first understand students’ knowledge representations and incorrect concepts (i.e., misconceptions) and organize instructions using various methods such as instructional scaffolding and cooperative learning. A student-centered
problem-solving instruction is necessary if their interest in mathematics learning is to be aroused. If appropriate methods are used, problem-solving instruction can result in improved student outcomes.
目 次
謝誌 I
摘要 Ⅲ
Abstrct Ⅴ
目次 Ⅶ
圖次 XI
表次 XIII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與待答問題 8
第三節 名詞釋義 10
第四節 研究限制 11
第二章 文獻探討 13
第一節 直線方程式的認知診斷 13
第二節 低成就生的數學教育 20
第三節 PMK 理論與教師專業發展 22
第四節 數學解題之相關概念與理論 34
第五節 學習鷹架與數學課程 38
第六節 合作學習應用於數學解題與討論 51
第七節 電腦在數學學習的重要性與功能 53
第三章 研究方法 57
第一節 研究流程 57
第二節 研究對象 60
第三節 研究工具 60
第四節 研究設計與實施 92
第五節 資料分析 94
第四章 資料分析與研究結果 95
第一節 學生知識表徵分析 95
第二節 數學解題教學成效分析 143
第三節 學生學習心得和策進方法 154
第四節 解題模式教學實驗後的自我省思與專業成長 163
第五章 結論與建議 167
第一節 結論 167
第二節 建議 173
參考文獻 175
壹、中文部分 175
貳、英文部分 181
附錄
附錄一 猜數字的推理技能(加減乘除)-審查表工作單圖片檔 189
附錄二 二次三項式審查表工作單和簡易表1-5 201
附錄三 「平面上的直角坐標」―象棋學習單及學生作答情形 211
附錄四 學生小組討論課後心得 233
附錄五 學生合作學習心得 237
附錄六 學生個別學習心得 239
附錄七 暑輔結束數學「小組討論」心得作業單 241
附錄八 畢業前夕數學「個人反思」作業單 243
附錄九 與學生共同討論班規(回家練習30 分鐘題目) 245
附錄十 檢視每天上課教學模式 247
附錄十一 全班討論上課方式和調整組別 249
附錄十二 師生合作教學(以斜率為例) 253
附錄十三 同儕指導 13 號同學求斜率 267
附錄十四 六組學生的組內小組討論 269
附錄十五 第二小組競賽演示 273
附錄十六 學生演示直線方程式知識調查 275
附錄十七 象棋學習單學生作答情形(標示第Ⅱ象限點坐標) 285
附錄十八 直線的知識調查學生作答情形 287
附錄十九 直線斜率與方程式(數學進階Ⅰ)學生解題作答情形 299
附錄二十 師生對話由直線方程式找斜率 303
附錄二十一 直線斜率與方程式(後測)學生解題作答情形 309
附錄二十二 GeoGebra 教學範例 313
附錄二十三 研究者示範畫點P,Q, R求線段中點和求距離 315
附錄二十四 研究者觀察多位學生共同演示三點共線問題 319
壹、中文部份:
丁信中、洪振方、楊芳瑩(2001)。科學理論形成與精煉過程對科學學習的意涵。科學教育月刊,240,2-13。
九章出版社(譯)(1990)。數學發現(原作者:G. Polya)。臺北:九章出版社。(原著出版年:1989)
于富雲(2001)。從理論基礎探究合作學習的教學效益。教育資料與研究,38,22-28。
中小學數學教師培育跨國研究(2017年7月2日)。科學教育研究資料庫【網路資料】。取自http://www.dorise.info/DER/05_TEDS-M/index.html
支紹慈(2006)。電子工程問題的數學解題能力模式之研究-以科技大學為例(未出版之碩士論文)。國立臺灣師範大學,臺北。
方祖同(譯)(1984)。新數學為何失敗(原作者:莫里斯.克蘭因)。臺北:科學月刊社。(原著出版年:1973)
方祖同(譯)(1993)。教授為何教不好(原作者:莫里斯.克蘭因)。臺北:科學月刊社。(原著出版年:1977)
王文科、王智弘(2008)。教育研究法。臺北:五南。
王文科、王智弘(譯)(2002)。質的教育研究-概念分析(原作者:J. H. McMillan & S. Sally)。臺北:師大書苑。(原著出版年:1994)
王婷瑩(2004)。高中生數學學習歷程中之思維研究-多項式除法原理、餘式定理、因式定理(未出版之碩士論文)。國立臺灣師範大學,臺北。
王憲鈿(譯)(1989)。發生認識論原理(原作者:J. Piaget)。北京:商務印書館。(原著出版年:1970)
王蘇、汪安聖(1992)。認知心理學。北京:北京大學出版社。
行政院教育改革審議委員會(1996)。總諮詢報告書【網路資料】。取自http://www.sinica.edu.tw/info/edu-reform/farea2/176
伍振鷟、林逢祺、黃坤錦、蘇永明(1998)。教育哲學。臺北:五南。
朱新明、李亦菲(2000)。架設人與計算機的橋樑:西蒙的認知與管理心理學。湖北:湖北教育出版社。
何仕仁、黃台珠(2005)。不同教學、知識創新管理模式對國中生數學學習成效之影響研究。科學教育月刊,13(2),217-239。
何鳳珠(2011)。國小高年級數學低成就學生補救教學成效之探究【網路資料】。取自:http://ceag.tn.edu.tw/modules/ceag/teach.php?TeamID=8&NewsID=561
吳宏志(譯)(1994)。教育的目的(原作者:A. N.Whitehead)。臺北:桂冠。(原著出版年:1916)
吳欣隆、黃詠光、顏寧(譯)(2009)。建構紮根理論(原作者:C. Kathy)。臺北:五南。(原著出版年:2006)
吳芝儀、廖梅花(譯)(2001)。質性研究入門:紮根理論研究方法(原作者:A. Strauss & J. Corbin)。嘉義:濤石。(原著出版年:1998)
吳思慧、邱守榕(2005)。以電腦代數系統(CAS)輔助微積分學習之研究:以單變數函數的極限為例。中華民國第二十一屆科學教育學術研討會發表之論文,國立彰化師範大學。
宋玉如(2008)。中學數學教師應有的數學教學特質研究—學生觀點(未出版之碩士論文)。國立臺灣師範大學,臺北。
李心煽、王日爽、李日堯(譯)(1992)。數學與猜想(原作者:G. Polya)。臺北:九章出版社。(原著出版年:1954)
李坤章(2008)。國民中學學生學習差異之研究-以彰化縣偏遠及市鎮學校為例(未出版之碩士論文)。大葉大學,彰化。
李長燦(2003)。「近側發展區」概念的新詮釋及其對幼兒教育的啟示。幼兒保育學刊,1,1-18。
汪益(2004)。Let`s Excel!獨家剖析。臺北:樂學。
汪益(2007)。邏輯訓練。臺北:學貫。
岳修平(譯)(1998)。教育心理學-學習的認知基礎(原作者:E. D. Gagne, C. W. Yekovich, & F. R. Yekovich)。臺北:遠流出版社。(原著出版年:1993)
林基興(2005)。閱讀力-收集、解讀、思考、判斷能力的源頭。臺北:如何出版社。
林清山(1998)。教育心理學。臺北:遠流出版社。
林清山(譯)(1997)。教育心理學-認知取向(原作者:R. E. Mayer)。臺北:遠流出版社。(原著出版年:1987)
林清山、張景媛(1993)。國中生後設認知、動機信念與數學解題策略關係之研究。教育心理學報,26,53-74。
林寶貴、錡寶香(1992)。高職階段聽障學生學習態度、成就動機及其學業成就之相關研究。特殊教育學刊,8,17-32。
邱守榕(1979)。正視數學教育的問題-從教育目標談到教師的使命。人與社會,7,4。
邱守榕(1986)。師資教育。行政院國家科學委員會數學教育部門規劃資料。臺北:行政院國家科學委員會。
邱守榕(1988)。數理師資教育研究之興與變。第三屆科學教育學術研討會發表之論文,國立彰化師範大學。
邱守榕(1992)。關於數學學習研究。科學發展月刊,20,571-584。
邱守榕(1996)。建構教學:數學教育的全民化。建構與教學,8,1-4。
邱守榕、汪益、曾旭堯(2008)。推理活動的教學研究-數理科學習整合。行政院國家科學委員會專題研究計畫(編號:NSC96-2521-S-018-001)。彰化:國立彰化師範大學。
邱守榕、黃鴻博、梁崇惠、陳正賢(1999)。數學教學活動設計與表演賽推廣手冊。彰化:國立彰化師範大學。
邱守榕、黃鴻博、梁崇惠、陳正賢(2001)。數學活動推廣手冊。彰化:國立彰化師範大學。
邱守榕主編(1996)。數學教育學門資源整合規劃資料。臺北:行政院國科會。
施皓耀(2015)。數學新世界教師種子生根計畫。教育部補助計畫,未出版。
段曉林(1996)。學科教學知識對未來科教師資培育上的啟示。數理教學及師資培育學術研討會發表之論文,國立彰化師範大學。
范育文(2010)。電腦融入圖示策略對國小數學成就低落學生整數乘除法應用題之學習成效(未出版之碩士論文)。國立臺北教育大學,臺北。
張小萍(2004)。使用全方位設計對普通班數學低成就學童進行數概念補救教學之效果研究(未出版之碩士論文)。國立臺北教育大學,臺北。
張春興(1996)。教育心理學─三化取向的理論與實踐。臺北:東華書局。
張家生、伍宇文(譯)(1989)。如何精進數學技巧(原作者:Daniel Solow)。臺北:第三波。(原著出版年:1984)
張新仁主編(2003)。學習與教學新趨勢。臺北:心理出版社。
教育部(2008 年11 月1 日)。教育施政藍圖(98-101 年)【網路資料】。取自www.ymhs.tyc.edu.tw/principal/WebPage/教育施政藍圖(98-101 年).htm
教育部(2009 年10 月10 日)。國民中小學九年一貫課程綱要【網路資料】。取自http://teach.eje.edu.tw/9CC/index_new.php
教育部(2009 年10 月30 日)。97 年度教育部教學卓越獎複選審查實施計畫【網路資料】。取自http://www.zlsh.tp.edu.tw/onweb.jsp?webno=3333333:57
曹一鳴(2003)。數學實驗教學模式探究。課程‧教材‧教法,1,46-48。
郭素珍(1982)。比率概念暨學童認知發展關聯之研究。教育學院學報,8,547-592。
郭蕙琳(2002)。緣數學史探討數學學習中的情意與信念(未出版之碩士論文)。國立彰化師範大學,彰化。
陳正明(2003)。合作學習動態分組策略(未出版之碩士論文)。中原大學,桃園。
陳正明(2003)。透過Excel輔助進行線型函數補救教學之研究:以一個國二學生為例(未出版之碩士論文)。國立臺灣師範大學,臺北。
陳正賢(1990)。職前教師數學解題情意因素之研究(未出版之碩士論文)。國立彰化師範大學,彰化。
陳瓊森、汪益(譯)(2001)。超越教化的心靈(原作者:H. Gardner)。臺北:遠流出版社。(原著出版年:1991)
傅鸝、龔劬、劉瓊蓀、何中市(2000)。數學實驗。北京:科學出版社。
黃志賢(2003)。數學低成就學生的補救教學【網路資料】。取自
http://163.17.203.129/hand/07-Read/S-TEXT/數學低成就學生的補救教學.pdf.
黃淑君(2003)。國小學童聽覺理解能力與閱讀理解能力之相關研究(未出版之碩士論文)。國立臺中教育大學,臺中。
黃淑華(2003)。高中生複數學習歷程中之數學思維研究(未出版之碩士論文)。國立臺灣師範大學,臺北。
黃道(譯)(1990)。心理學與認識論-一種有關知識的理論(原作者:J. Piaget)。臺北:結構群文化事業有限公司。(原著出版年:1972)
黃毅英(1997)。邁向大眾數學的數學教育。臺北:九章出版社。
萬福永、戴浩暉(2003)。數學實驗教程。北京:科學出版社。
詹玉貞(2000)。波利亞的解題步驟對國中數學資優生學習幾何證明成效之研究(未出版之碩士論文)。國立臺灣師範大學,臺北。
靳建國(譯)(1991)。教育論(原作者:羅素)。臺北:遠流。(原著出版年:1917)
管公度(1951)。中等數學教育的改造是時候了。教育輔導月刊,1(6)。
劉湘川(2004)。知識結構有向圖形類似度改進指標。測驗統計年刊,12,193-210。
劉湘川(2006)。試題結構模式之評估指標。劉湘川試題反應理論講義。亞洲大學,臺中。
劉湘川(2007a)。標準規格化多點計分順序理論。測驗統計年刊,15,1-12。
劉湘川(2007b)。具動態閾值之廣義多點計分。劉湘川試題反應理論講義。亞洲大學,臺中。
劉湘川、陳繁興、陳泉源、郭素珍(2012)。基於Q 矩陣理論之試題順序理論及其應用—以特殊學校分數加法為例。第13 屆提昇技職學校經營品質研討會發表之論文,國立彰化師範大學。
劉湘川、簡茂發(2006)。多點計分順序理論。第七屆兩岸心理與教育測驗學術研討會發表之論文,國立政治大學。
鄭百恩(2007)。Excel輔助微積分學習之教學實驗研究(未出版之碩士論文)。國立彰化師範大學,彰化。
鄭百恩、汪益、邱守榕(2006)。在Excel環境中數學推理之分析。中華民國第二十二屆科學教育學術研討會發表之論文,國立臺灣師範大學。
蕭富元(2007)。芬蘭教育世界第一的秘密。天下雜誌,384,72-77。
閻育蘇(譯)(1999)。怎樣解題(原作者:G. Polya)。臺北:九章出版社。(原著出版年:1957)
謝哲仁(2003)。從可操作動態視覺化基本函數之微分設計談動態微積分新的學習方法。數學傳播季刊,27(3),79-85。
謝豐瑞(2012)。國高中數學教學專業知能指標。中等教育季刊,63,3。
謝豐瑞主編(2012)。臺灣數學師資培育跨國研究Taiwan TEDS-M 2008。臺北:國立臺灣師範大學。
鍾啟泉、徐斌耙(2003)。數學課程與教學論。浙江:浙江教育出版社。
羅驥韡、許舜淵、彭建勛、呂鳳琳、胡政德、左台益(譯)(2009)。GeoGebra 版本3.2 使用說明【網路資料】(原作者:M. Hohenwarter & J. Hohenwarter)。取自http://www.geogebra.org(2012 年1 月2 日)
蘇耿進(2005)。利用Excel 設計之活動進行國二應用問題補救教學之個案研究(未出版之碩士論文)。國立高雄師範大學,高雄。

貳、英文部分:
Airasian, P. W., & Bart, W. M. (1973). Ordering theory: A new and useful measurement model. Journal of Education Technology, 5, 56-60.
Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245-274.
Berk, L. E. (1994). Vygotsky theory: The importance of make-believe play. Young Children, 50(1), 30-39.
Berk, L. E., &Winsler, A. (1995). Scaffolding Children’s Learning: Vygotsky and Early Childhood Education. Washington, DC: National Association for the Education of Young Children.
Breeden, T., & Mosley, J. (1992). The cooperative learning companion. Nashville, Tenn.: Incentive Publications.
Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer Academic Publishers.
Brown, P., Friedrichsen, P., & Abell, S. (2009). Teachers' knowledge of learners and instructional sequencing in an alternative certification program. Annual meeting of the American Educational Research Association, San Diego, CA.
Brown, S. I., Cooney, T. J., & Jones, D. (1990). Mathematics teacher education. In W.R. Houston(Ed.). Handbook of Research on Teacher Education. NY: Macmillan.
Bruner, J. S. (1960). The process of education. Cambridge, MA: Harvard University Press.
Bruner, J. S. (1966 ). Towards a theory of instructions in mathematics. Mass: Harvard University Press.
Cobb, P., & Bauersfeld, H. (1995). Introduction: The coordination of psychological and sociological perspectives in mathematics education. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning : Interaction in Classroom Cultures. (pp. 1-16). Hillsdale, NJ: Lawrence Erlbaum Associates.
Cochran, K. F., DeRuiter, J. A., & King, R. A. (1993). Pedagogical content knowledge: An integrative model for teacher preparation. Journal of Teacher Education, 44(4),268.
Cockcroft, W. H. (1980). Mathematics conunts. London: Her Majesty’s StationeryOffice.
Davis, P. J., & Hersh, R. (1980). The mathematical experience. Boston: Birkhauser.
DeRuiter, J. A. (1991,April). The development of teachers, pedagogical content knowledge. Paper presented at the annual meeting of the American Educational Research Association,Chicago.
Desimone, L. M. (2009). Improving impact studies of teachers’ professional development:Toward better conceptualizations and measures. Educational Researcher, 38(3), 181-199.
Dewey, J. (1910). How we think. Boston: D.C. Heath & Co.
Dyson, A. (1990). Special educational needs and the concept of change Oxford Review of Education. 16(1), 55-66.
Fennema, E., & Franke, M. U. (1992). Teachers’ knowledge and its impact. In Grouws, D. A. (Ed.), Handbook of research on mathematics teaching and learning(pp.147-164). NY: MacMillan.
Fishman, J. J., Marx, R. W., Best, S., & Tal, R. T. (2003). Linking teacher and studentlearning to improve professional development in systemic reform. Teaching andTeacher Education, 19, 643-658.
Freudenthal, H. (1981). Major problems of mathematics education. Educational Studiesin Mathematics, 12.
Gagné, R. M. (1985). The conditions of learning and theory of instruction, (4th ed.).NewYork, NY: Holt, Rinehart, and Winston.
Gardner, H. (1991). The unschooled mind: how children think and how schools shouldteach. NY: Basic Books.
Greeno, J. (1987). Instructional representations based on research about understanding.In A. H. Schoenfeld (Ed.) Cognitive Science and Mathematics Education (pp.61-88). Hillsdale, NJ: Lawrence Erlbaum Associates.
Griffin, S., Case, R., & Sandieson, R. (1992). Synchrony and asynchrony in theacquisition of children’severyday mathematical knowledge. In R. Case (Ed.), The Mind’s Staircase: Exploring the Conceptual Underpinnings of Children’s Thought and Knowledge (pp.75-97). Hillsdale, NJ: Lawrence Erlbaum Associates.
Harskamp, E., & Suhre, C. (2007). Schoenfeld’s problem solving theory in a student controlled learning environment. Computers & Education, 49, 822-839.
Hart, K. M. (1980). A report of the mathematics component of the CMSM Programme. C. S. E. Chelsea College, University of London.
Hendrix, J. C. (1996). Cooperative learning: Building a democratic community. The Clearing House, 69(6), 333-336.
Hersh, R. (1997). What is mathematics, really? NY: Oxford University Press.
Hiele, P. M. van (1986). Structure and insight: A theory of mathematics education. Orlando, FL: Academic Press.
Hoffer, A. (1981). Geometry is more than proof. Mathematics teacher, 74(1), 11-18.
Hogan, K., & Pressley, M. (1997). Scaffolding student instruction. Cambridge, MA: Brookline Books.
Inagaki, K., & Hatano, G. (1993). Young children's understanding of the mind‐body distinction. Child development, 64(5), 1534-1549.
Johnson, D. W., & Johnson, R. T. (1991). Joining together: Group theory and group skills (4th Ed.). Englewood Cliffs, NJ: Prentice Hall.
Jonassen, D. H. (1996). Computers as mindtools for schools: engaging critical thinking(2th Ed.). NJ: Prentice-Hall.
Jonassen, D. H., Beissner, K., & Yacci, M. (1993). Structural knowledge. Techniques for Representing, Conveying, and Acquiring Structural Knowledge. Hillsdale, NJ: Lawrence Erlbaum.
Kaput, J. J. (1986). Information technology and mathematics: opening new representational windows. The Journal of Mathematical Behavior, 5(2), 187-207.
Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.
Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children. Chicago: University of Chicago Press.
Langer, J. A., & Applebee, A. N. (1983). Instructional scaffolding: Reading and writing as natural language activities. Language Arts, 60, 168-175.
Lee, L. (1996). An initiation into algebraic culture through generalization activities. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to Algebra: Perspectives for Research and Teaching(pp. 87-106). Boston, MA: Kluwer.
Leighton, J. P., Gier, M. J., & Hunka, S. M. (2004). The attribute hierarchy method for cognitive assessment: a variation on Tatsuoka's rule space approach. Journal of Educational Measurement, 41(3), 205-237.
Lerner, J. (2003). Learning disabilities: Theories, diagnosis, and teaching strategies (9th Ed.). Boston: Houghton Mifflin.
Lesh, R., Post, T., & Behr, M. (1987). The role of representational translations in proportional reasoning and rational number concepts. In C. Janvier (Ed.). Problems of representation in matheatics learning and problem solving. Hillsdale, NJ: Lawrence Erlbaum Associates.
Lin, Y. H., Bart, W. M., & Huang, K. J. (2006). WPIRS . Software . [manual . and software for generalized scoring of item relational structure]. Taiwan, National Taichung University, Taichung City, Taiwan.
Linn, M. C., & Burbules, N. C. (1993). Construction of knowledge and group learning. The practice of constructivism in science education, 91-119.
Liu, H. -C., Wu, S. N., & Chen, C. C. (2011). Item relational structure algorithm based on empirical distribution critical value, Journal of Software, 6(11), 2106-2113.
Liu, H.-C. (2012). A novel validity index for evaluating the item ordering structure based on Q-matrix theory, in proceeding of 2nd International Conference on Mechatronics and Materials Engineering (ICMME 2012) .
Liu, H.-C., Kuo, H.-c. & Tsai, H.-C.(2013). Improving Item Relational Structure Theory Based on a Novel D-Matrix Theory, in Proceeding of The 2013 International Conference in Management Sciences and Decision Making.
Lock, A. (2000). Human nature, learning and mind. 75202. Lecture 17: Vygotsky. Available at http://www.massey.ac.nz/~i75202
Mayer, R. E. (1987). Educational psychology: A cognitive approach. Boston, MA.: Little. Brown.
Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for integrating technology in teachers’ knowledge. Teachers College Record, 108(6), 1017–1054.
Moll, L. C. (1990). Vygotsky and education: Instructional implications and applications of sociohistorical psychology. Cambridge: Cambridge University Press.
Moore, R. C. (1994). Making the transition to formal proof. Educational studies in mathematics, 27, 249-266.
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, Va. NCTM.
National Council of Teachers of Mathematics. (NCTM,1991). Professional standards for teaching mathematics. Reston, Va: Author.
National Research Council (1989). EVERYBODY COUNTS. Washington , DC: National Academy Press.
Olsen, R. E. W. B., & Kagan, S. (1992). About cooperative learning. Cooperative language learning: A teacher’s resource book, 1-30.
Olsen, R. E. W-B., & Kagan, S. (1992). About cooperative learning. In C, Kessler (Ed.), Cooperative language learning : A teacher’s resource book (pp.1-30). NJ: Prentice-Hall Regents.
Organisation for Economic Cooperation and Development(OECD) (2003). International outcomes of learning in mathematics literacy and problem solving. National Center for Education Statistics.
Piattelli-Palmarini, M. (1980). Language and learning: The debate bBetween Jean Piaget and Noam Chomsky. Cabbridge, MA:Havard University Press.
Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.
Polya, G. (1957). How to solve it. NY: Doubleday.
Reber, A. S. (1993). Implicit learning and tacit knowledge: A essay on the cognitive unconscious. Oxford: Oxford UP.
Roger, B. (1988). The development of language and language researchers. NY: Amoazon.
Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando: Academic Press.
Schoenfeld, A. H. (1987). Cognitive science and mathematics education. Hillsdale, NJ: Lawrence Erlbaum.
Schoenfeld, A. H. (1992). Learning to think mathematically: problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of Research on Mathematics Teaching (pp. 334–370). New York: MacMillan Publishing.
Senk, S. L. (1985). How well do students write geometry proofs? The Mathematics Teacher, 78 (6), 448-456.
Senk, S. L. (1989). Van Hiele levels and achievement in writing geometry proofs. Journal for Research in Mathematics Education, 20, 309–321.
Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-22.
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.
Silver, E., Kilpatrick, J., & Schlesinger, B. (1990). Thinking through mathematics: Fostering inquiry and communication in mathematics classrooms. College Entrance Examination Board, NY.
Skemp, R. R. (1987). The psychology of learning mathematics. NJ: Lawrence Erlbaum Associates.
Slavin, R. E. (1995). Cooperative Learning and Intergroup Relations. In J. Banks, & C. M. Banks (Eds.), Handbook of Research on Multicultural Education (pp. 628-634).New York: Macmillan.
Slavin, R. E. (1995). Cooperative learning: Theory, research, and practice (2nd ed.) Boston: Allyn & Bacon.
Sosniak, L. A., & Stodolsky, S. S. (1993). Teachers and textbooks: Materials use in four fourth-grade classrooms. The Elementary School Journal, 93(3), 249-275.
Sriskanda, N. (2003). Using excel spreadsheet to understand the limiting value of a sequence. In P. Bogacki, E. D. Fife, & L. Husch, the Sixteenth Annual International Conference on Technology in Collegiate Mathematics, Chicago.
Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In R. A. Lesh & A. E. Kelly (Eds.), Research design in mathematics and science education (pp. 267-307). Hillsdale, NJ: Erlbaum.
Steffe, L., & D' Ambrosio, B. S. (1996). Using teaching to enhance understanding of students’ mathematics. In D. F. Treagust, R. Duit & B. F. Fraser(Eds.). Improving teaching and learning and learning in science and mathematics. New York: Teachers College Press.
Takeya, M. (1980). Construction and utilization of item relational structure graphs for use in test analysis. Japan Journal of Educational Technology, 5, 93-103. (in Japanese)
Takeya, M. (1991). New item structure theorem. Tokyo: Waseda University.
Tatsuoka, K. K. (1983). Rule space: an approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20(4), 345-354.
Usiskin, Z., (1982). Van Hiele levels and achievement in secondary school geometry, University of Chicago.
Vygoysky, L. S. (1978). Mind in society: The development of higher psychological processes. Cabbridge, MA:Havard University Press.
Wain, G. T., & Woodraw, D. (Eds.). (1980). Mathematics Teacher Education Project, Tutor’s Guide. London: Blackie & Son.
Wang, T. (2002). The basic concept of cooperative learning. Education Studies, 2.
Wang,T. (2002) The Concept of Cooperative Learning and Implementation. Beijing: China Human Resources and Social Security Publishing.
Webb, N. M., & Palincsar, A. S. (1996). Group processes in the classroom. Prentice Hall International.
Weinstein , C. E., & Mayer, R. E. (1985). The teaching of learning strategies, In Handbook of teaching. 3rd Ed., in M. C. Whittrock (Ed.), New York: Macmillan.
Wilson, K. (2004). Spreadsheet generalizing and paper and pencil generalizing. Proceedings of the 28th conference of the International group for the Psychology of Mathematics Education.
Wood, D. J., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry. 17.
竹谷 誠 (1980)。IRS テスト構造法と活用法。日本教育工學会誌,5,93-103。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top