|
[1] Barker, J., M. A. Khan, et al. Mechanism of the Pasteur Effect. Nature 201: 1126-1127 (1964). [2] Brown JM, Giaccia AJ, et al. The unique physiology of solid tumors: opportunities and problems for cancer therapy. Cancer Research 58 (7): 1408-1416 (1998). [3] Helmlinger G, Yuan F, et al. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3: 177-182 (1997). [4] Rofstad, E. K., B. Mathiesen, et al. Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66 (13): 6699-6707 (2006). [5] Warburg, O., Posener, K., et al. über den Stoffwechsel der Carcinomzelle. Biochem. Zeitschr. 152, 309-344 (1924). [6] Racker, E. Bioenergetics and the problem of tumor growth. Am. Sci. 60, 56-63 (1972). [7] Lu, H., R. A. Forbes, et al. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277 (26): 23111-23115 (2002) [8] Minchenko, A., I, Leshchinsky, et al. Hypoxia-inducible factor-1- mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem 277 (8): 6183-6187 (2002) [9] Bonuccelli G, Tsirigos A, et al. Ketones and lactate ‘fuel’ tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9, 3506-3514 (2010). [10] Spugnini, E. P., G. Citro, et al. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy. J Exp Clin Cancer Res 29: 44 (2010). [11] Cardone RA, Casavola V & Reshkin SJ. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5, 786-795 (2005). [12] De Milito, A. and S. Fais. Tumor acidity, chemoresistance and proton pump inhibitors. Future Oncol 1 (6): 779-786 (2005). [13] Muller, Florian. The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging. AGE 23 (4): 227-253 (2002). [14] Sumbula, G., A. Columbano, et al. Increased ROS generation and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cells. Apoptosis 12 (1): 113-123 (2007). [15] Schulz TJ, Thierbach R, et al. Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited. J Biol Chem. 281, 977-981 (2006). [16] Le A, Cooper CR, et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci. USA. 107, 2037-2042 (2010). [17] Zawacka- Pankau, J., V. V. Grinkevich, et al. Inhibition of glycolytic enzymes mediated by pharmacologically activated p53: targeting Warburg effect to fight cancer. J Biol Chem 286 (48): 41600-41615 (2011). [18] Chan, D. A., P. D. Sutphin, et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med 3 (94): 94ra70 (2011). [19] Jiang, S., L. F. Zhang, et al. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J 31 (8): 1985-1998 (2012). [20] Wolf, A., S. Agnihotri, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 208 (2): 313-326 (2011). [21] Sun, Q., X. Chen, et al. Mammalian target of rapamycin upregulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci. USA. 108 (10), 4129-4134 (2011). [22] Kosugi, M., R. Ahmad, et al. MUC1-C oncoprotein regulates glycolysis and pyruvate kinase M2 activity in cancer cells. PLoS One 6 (11): e28234 (2011). [23] Markovets, A. A. and D. Herman. Analysis of cancer metabolism with high-throughput technologies. BMC Bioinformatics. 12 Suppl 10: S8 (2011). [24] Chandra, D. and K. K. Singh. Genetic insights into OXPHOS defect and its role in cancer. Biochim Biophys Acta. 1807 (6): 620-625 (2011). [25] Wang, X. and H. Jin The epigenetic basis of the Warburg effect. Epigenetics 5 (7): 566-568 (2010). [26] Liu, X., X. Wang, et al. Warburg effect revisited: an epigenetic link between glycolysis and gastric carcinogenesis. Oncogene 29 (3): 442-450 (2010). [27] Fang, R., T. Xiao, et al. MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting Hexokinase 2 gene. J Biol Chem 287 (27): 23227-23235. (2012) [28] Almeida, A., J. P. Bolanos, et al. E3 ubiquitin ligase APC.C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proc Natl Acad Sci. USA. 107 (2): 738-741 (2010). [29] Dang, C. V. Links between metabolism and cancer. Genes Dev. 26 (9): 877-890 (2012). [30] Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nature Reviews Cancer 4 (11): 891-899 (2004). [31] Shakhova, O., C. Leung, et al. Lack of Rb and p53 delays cerebellar development and predisposes to large cell anaplastic medulloblastoma through amplification of N-Myc and Ptch2. Cancer Res 66 (10): 5190-5200 (2006). [32] Grille, S. J., A. Bellacosa, et al. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 63 (9): 2172-2178 (2003). [33] Yang, M. H., D. S. Hsu, et al. Bmi1 is essential in Twist1- induced epithelial- mesenchymal transition. Nat Cell Biol 12 (10): 982-992 (2010). [34] Kudo-Saito, C., H. Shirako, et al. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer cell 15 (3): 195-206 (2009). [35] Shih, J. Y. and P. C. Yang. The EMT regulator slug and lung carcinogenesis. Carcinogenesis 32 (9): 1299-1304 (2011). [36] Mandal, M., J. N. Myers, et al. Epithelial to mesenchymal transition in head and neck squamous carcinoma: association of Src activation with E-cadherin down-regulation, vimentin expression, and aggressive tumor features. Cancer 112 (9): 2088-2100 (2008). [37] Orlichenko, L. S. and D. C. Radisky. Matrix metalloproteinases stimulate epithelial- mesenchymal transition during tumor development. Clin Exp Metastasis 25 (6): 593-600 (2008). [38] Lin, C. Y., P. H. Tsai, et al. Matrix metalloproteinase-9 cooperates with transcription factor Snail to induce epithelial- mesenchymal transition. Cancer Sci 102 (4): 815-827 (2011). [39] Schmidt, J., A. Riechers, et al. Targeting melanoma metastasis and immunosuppression with a new mode of melanoma inhibitory activity (MIA) protein inhibition. PLoS One 7 (5): e37941 (2012). [40] Hurwitz, A. A. and S. K. Watkins. Immune suppression in the tumor microenvironment: a role for dendritic cell- mediated tolerization of T cells. Cancer Immunol Immunother 61 (2): 289-293 (2012). [41] Thornalley, P. J. and N. Rabbani. Glyoxalase in tumourigenesis and multidrug resistance. Semin Cell Dev Biol 22 (3): 318-325 (2011). [42] Nakano, A., D. Tsuji, et al. Glycolysis inhibition inactivates ABC transporters to restore drug sensitivity in malignant cells. PLoS One 6 (11): e27222 (2011). [43] Joost H. Thorens B. The extended GLUT- family of sugar/polyol transport facilitators.: nomenclature, sequence characteristics, and potential function of its novel members. Mol. Membr. Biol. 18 (4): 247-56 (2001). [44] Krzeslak, A., K. Wojcik-Krowiranda, et al. Expression of Glut1 and Glut3 glucose transporters in endometrial and breast cancers. Pathol Oncol Res 18 (3): 721-728 (2012). [45] Ashton-Sager, A., A. F. Paulino, et al. GLUT-1 is preferentially expressed in atypical endometrial hyperplasis and endometrial adenocarcinoma. Appl Immunohistochem Mol Morphol 14 (2): 187-192 (2006). [46] Mayer, A., M. Hockel, et al. GLUT-1 staining of squamous cell carcinomas of the uterine cervix identifies a novel element of invasion. Int J Oncol 38 (1): 145-150 (2011). [47] Osthus, R. C., H. Shim, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275 (29): 21797-21800 (2000). [48] Wolf, A., S. Agnihotri, et al. Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme. Neurobiol Dis 44 (1): 84-91 (2011).. [49] Brown, R. S., T. M. Goodman, et al. Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nucl Med Biol 29 (4): 443-453 (2002). [50] Shoshan- Barmatz, V. and M. Golan. Mitochondrial VDAC1: function in cell life and death and a target for cancer therapy. Curr Med Chem 19 (5): 714-735 (2012). [51] Shoshan- Barmatz, V., M. Zakar, et al. Key regions of VDAC1 functioning in apoptosis induction and regulation by hexokinase. Biochim Biophys Acta 1787 (5): 421-430 (2009). [52] Gordon, G. J., R. Bueno, et al. Genes associated with prognosis after surgery for malignant pleural mesothelioma promote tumor cell survival in vitro. BMC Cancer 11: 169 (2011). [53] Luo W, Hu H, Chang R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia- inducible factor 1. Cell 145: 732-744 (2011). [54] Kim JW, Tchernyshyov I, Semenza GL & Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3: 177-185 (2006). [55] Swinnen, J. V., K. Brusselmans, et al. Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 9 (4): 358-365 (2006). [56] Marin-Hernandez, A., S. Rodriguez-Enriquez, et al. Determining and understanding the control of glycolysis in fast- growth tumor cells. Flux control by and over- expressed but strongly product- inhibited hexokinase. FEBS J 273 (9): 1975-1988 (2006). [57] Tomitsuka E, Hirawake H, Goto Y, et al. Direct evidence for two distinct forms of the flavoprotein subunit of human mitochondrial complex II (succinate- ubiquinone reductase). J Biochem 134 (2): 191-195 (2003). [58] Horsefield R, Yankovskaya V, Sexton G, et al. Structural and computational analysis of the quinine-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction. J Biol Chem 281 (11): 7309-7316 (2006). [59] Bayley JP, Kunst HP, Cascon A, Sampietro ML, et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 11, 363-372 (2010). [60] Briere JJ, Favier J, Gimener-Roqueplo AP & Rustin P. Tricarboxylic acid cycle dysfunction as a cause of human diseases and tumor formation. Am J Physiol Cell Physiol 291, C1114-1120 (2006). [61] Simonnet, H., J. Demont, et al. Mitochondrial complex I is deficient in renal oncocytomas. Carcinogenesis 24 (9): 1461-1466 (2003). [62] Desouki, M. M., M. Kulawiec, et al. Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol Ther 4 (12): 1367-1373 (2005). [63] Yankovskaya V, Horsefield R, Tornroth S, et al. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299 (5607): 700-704 (2003). [64] Simonnet, H., N. Alazard, et al. Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis 23 (5): 759-768 (2002). [65] Annunen-Rasila, J., S. Ohlmeier, et al. Proteome and cytoskeleton responses in osteosarcoma cells with reduced OXPHOS activity. Proteomics 7 (13): 2189-2200 (2007). [66] Riva F, Zuco V, Vink A A, et al. UV-induced DNA incision and proliferating cell nuclear antigen recruitment to repair sites occur independently of p53-replication protein A interaction in p53 wild type and mutant ovarian carcinoma cells. Carcinogenesis 22 (12): 1971-1978 (2001). [67] Bernal JA, Luna Rosa, et al. Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Nat Genet 32 (2): 306-311 (2002). [69] Green, D. R. and J. E. Chipuk. p53 and metabolism: Indide the TIGAR Cell 126 (1): 30-32 (2006). [70] Matoba, S., J. G. Kang, et al. p53 regulates mitochondrial respiration. Science 312 (5780): 1650-1653 (2006). [71] Markert, C. L., J. B. Shaklee, et al. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science 189 (4197): 102-114 (1975). [72] Maekawa, M., M. Inomata, et al. Eletrophoretic variant of a lactate dehydrogenase isoenzyme and selective promoter methylation of the LDHA gene in a human retinoblastoma cell line. Clin Chem 48 (11): 1938-1945 (2002). [73] Korshunov, A., K. Neben, et al. Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am J Pathol 163 (5): 1721-1727 (2003). [74] Dang, C. V., A. Le, et al. Myc-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 15 (21): 6479-6483 (2009). [75] Dang, C. V. The interplay between MYC and HIF in the Warburg effect. Ernst Schering Found Symp Proc (4): 35-53 (2007). [76] Le, A., C. R. Cooper, et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107 (5): 2037-2042 (2010). [77] Torres, M. P., S. Rachagani, et al. Graviola: A novel promising natural-derived deug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer Lett 323 (1): 29-40 (2012). [78] Kim, J. H., E. L. Kim, et al. Decreased lactate dehydrogenase B expression enhances claudin 1-mediated hepatoma cell invasiveness via imtochondrial defects. Exp Cell Res 317 (8): 1108-1118 (2011). [79] Leiblich, A., S. S. Cross, et al. Lactate dehydrogenase-B is silenced by promoter hypermethylation in human prostate cancer. Oncogene 25 (20): 2953-2960 (2006). [80] Xiaojun Zha, Fang Wang, Ying Wang, et al. Lactate dehydrogenase B is critical for hyperactive mTOR-mediated tumorigenesis. Cancer Res 71 (1): 13-18 (2011). [81] Takashi Kinoshita, Nijiro Nohata, et al. Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in maxillary sinus squamous cell carcinoma. Int J Onco 40: 185-193 (2012). [82] Bass TM, Weinkove D, Houthoofd K, et al. Effects of resveratrol on lifespan in Drosophila melanogaster and caenorhabditis elegans. Mech Ageing Dev 128 (10): 546-552 (2007). [83] Stef G, Csiszar A, Lerea K, et al. Resveratrol inhibits aggregation of platelets from high-risk cardiac patients with aspirin resistance. J. Cardovasc. Pharmacol 48 (2): 1-5 (2006). [84] Sharma M, Gupta YK. Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci 71 (21): 2489-2498 (2002). [85] Sinha K, Chaudhary G, Gupta YK. Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats. Life Sci 71 (6): 655-665 (2003). [86] Leone, S., T. Cornetta, et al. Resveratrol induces DNA double-strand breaks through human topoisomerase II interaction. Cancer Lett 295 (2): 167-172 (2010). [87] Vergara, D., C. M. Valente, et al. Resveratrol inhibits the epidermal growth factor- induced epithelial mesenchymal transition in MCF-7 cells. Cancer Lett 310 (1): 1-8 (2011). [88] Delmas, D., E. Solary, et al. Resveratrol, a phytochemical inducer of multiple cell death pathways: apoptosis, autophagy and mitotic catastrophe. Curr Med Chem 18 (8): 1100-1121 (2011). [89] Lqbal, M. A. and R. N. Bamezai. Resveratrol inhibits cancer cell metabolism by down regulating pyruvate kinase M2 via inhibition of mammalian target of rapamycin. PLoS One 7 (5): e36764 (2012). [90] Muqbil, I., F. W. Beck, et al. Old wine in a new bottle: the Warburg effect and anticancer mechanisms of resveratrol. Curr Pharm Des 18 (12): 1645-1654 (2012). [91] Shamim, U., S. Hanif, et al. Resveratrol-induced apoptosis is enhanced in low pH environments associated with cancer. J Cell Physiol 227 (4): 1493-1500 (2012). [92] Alex C. Liao., Chien Feng Li, Kun Hung Shen, et al. Loss of lactate dehydrogenase B subunit expression is correlated with tumour progression and independently predicts inferior disease-specific survival in urinary bladder urothelial carcinoma. Pathyology 43 (7): 707-712 (2011). [93] Hagiwara, K., N. Kosaka, et al. Stilbene derivatives promote Ago-2 dependent tumour-suppressive microRNA activity. Sci Rep 2: 314 (2012) [94] Perschiaroli, A., A. Giacobbe, et al. miR-143 regulates hexokinase 2 expression in cancer cells. Oncogene 10: 1038 (2012). [95] Yano, T. The energy-transducing NADH: quinine oxidoreductase, complex I. Mol Aspects Med 23 (5): 345-368 (2002). [96] Van der Laan, L., A. Coremans, et al. NADH videofluorimetry to monitor the energy state of skeletal muscle in vivo. J Surg Res 74 (2): 155-160 (1998). [97] McLure, K. G., M. Takagi, et al. NAD+ modulates p53 DNA binding specificity and function. Mol Cell Biol 24 (22): 9958-9967 (2004). [98] Tsvetkov, P., G. Asher, et al. Inhibition of NAD(P)H: quinone oxidoreductase 1 activity and induction of p53 degradation by the natural phenolic compound curcumin. Proc Natl Acad Sci USA 102 (15): 5535-5540 (2005). [99] Aksoy, P., C. Escande, et al. Regulation of SIRT1 mediated NAD dependent deacetylation: a noel role for the multifunctional enzyme CD38. Biochem Biophys Res Commun 349 (1): 353-359. [100] Hung Y. P., Albeck J. G., Tantama M., Yellen G. Imaging cytosolic NADH-NAD (+) redox state with a genetically ecnoded fluorescent biosensor. Cell Metab 14 (4): 545-554 (2011). [101] Xia, J., Psychogios, N., Yound N. and Wishart, D. S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucl. Acids Res. 37 W652-660. (2009). [102] Xia, J., Mandal, R., Sinelnikov, I., Broadhurst, D., and Wishart, D. S. MetaboAnalyst 2,0 – a comprehensive server for metabolomic data analysis. Nucl. Acids Res. First published online May 2, 2012. [103] Ralph J. DeBerardinis, Anthony Mancuso, et al. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104 (49): 19345-19350 (2007). [104] Erickson, J. W. and R. A. Cerione. Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget 1 (8): 734-740 (2010). [105] T. Mashima, H Seimiya, and T. Tsuruo. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. British Journal of Cancer 100 1369-1372 (2009).
|