跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 05:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳旺志
研究生(外文):Chen, Wang-Chih
論文名稱:利用放電合金化法製備鎂鎳合金粉末之結構特性及儲氫性質探討
論文名稱(外文):A Study on Structural Characteristics and Hydrogen Storage Properties of Mg-Ni Alloy Powder Synthesized by Electrical Discharge Alloying Process
指導教授:林宏茂林宏茂引用關係
指導教授(外文):Lin, Hung-Mao
口試委員:趙宜武汪俊延陳金多
口試委員(外文):Chao, Yi-WuUan, Jun-YenChen, Jin-Duo
口試日期:2011-07-25
學位類別:碩士
校院名稱:遠東科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:104
中文關鍵詞:儲氫放電合金化法
外文關鍵詞:HydrogenElectrical Discharge Alloying
相關次數:
  • 被引用被引用:0
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本研究以放電合金化法(Electrical Discharge Alloying, EDA)製備儲氫合金粉末,探討不同極性(polarity)、放電電流及脈衝時間對合金粉末結構及儲氫性質之影響。實驗結果顯示以鎳為負極所製作的儲氫合金粉末,粉末形貌多數為球狀,只有少部分為破裂不規則狀;而以鎂為負極所製作的儲氫合金粉末則多為破裂不規則狀。所有合金粉末表面有EDA製程所產生的裂紋與孔洞。

由ICP與EDS分析結果中,以鎳及鎂為負極儲氫合金粉末均含有Mg及Ni,但以鎂為負極的儲氫合金粉末之Ni含量相當低。此外,由XRD分析結果可知,未進行吸氫前,以鎳為負極所製作的儲氫合金粉末主要含有Mg2Ni 、MgNiO2、MgNi2、Mg6Ni、Mg、Ni相,而以鎂為負極所製作的儲氫合金粉末則含有Mg2Ni 、MgNiO2、MgNi2、Mg6Ni、Mg相。進行吸氫反應之後,所有儲氫合金粉末主要的相有Mg2NiH4、Ni2H、MgNiO2、Mg4NiO相,由XRD結果可以確認放電合金化法製備的儲氫合金粉末具有吸氫的能力。

由儲氫測試結果顯示,以鎳為負極製備的儲氫合金粉末的吸氫能力明顯高於以鎂為負極製備的儲氫合金粉末。而低放電電流製備的儲氫合金粉末之儲氫能力則優於高放電電流製備的儲氫合金粉末。綜合上述實驗結果可知,儲氫合金粉末中Ni的含量會影響儲氫的效果。

The study aims to investigate the effect of fixed polarities with different electrode materials, discharge currents and pulse duration on the structural and hydrogen storage properties of hydrogen storage alloy powders prepared by means of electrical discharge alloying (EDA). Experimental results reveal that powder prepared with nickel as the cathode appears mostly spheroidal and only a small part appears broken and irregular while the same prepared with magnesium as the cathode appears mostly broken and irregular. Both powders have cracks and pores that occurred during the EDA on the surface.

Results of analysis using ICP and EDS show that powders prepared with nickel and magnesium as the cathode both contain Mg and Ni while the same prepared with magnesium as the cathode contains considerably little Ni. Results of analysis using XRD further reveals that powder prepared with nickel as the cathode mainly contains Mg2Ni, MgNiO2, MgNi2, Mg6Ni, Mg and Ni phases while the same prepared with magnesium as the cathode contains Mg2Ni, MgNiO2, MgNi2, Mg6Ni and Mg phases prior to hydrogen absorption. The main phases of both powders are Mg2NiH4, Ni2H, MgNiO2 and Mg4NiO following hydrogen absorption. The same results confirm that powders prepared using EDA are capable of absorbing hydrogen.

Results of hydrogen storage testing indicate that powder prepared with nickel as the cathode is significantly more capable of absorbing hydrogen compared with the same prepared with magnesium and powder prepared with low discharge current has a better capability of hydrogen absorption compared with the same prepared with high discharge current. To sum up the aforementioned results, the content of Ni in hydrogen storage alloy powders affects hydrogen storage.

誌謝 i
摘要 ii
Abstract iii
目錄 v
表目錄 viii
圖目錄 ix
第一章 前言 1
第二章 文獻回顧 4
2-1氫的基本介紹 4
2-2氫氣的儲存 4
2-3 儲氫合金 6
2-4 鎂基儲氫合金 8
2-5 儲氫粉末的製備 9
2-5-1 放電加工法工作原理 9
2-5-2 放電加工之合金化原理 10
2-5-3 影響放電加工製程之因素 10
2-5-4 放電合金化法製作粉末之現況與回顧 10
第三章 實驗步驟與方法 22
3-1 儲氫合金粉末之製備 22
3-2 儲氫合金粉末之分析 22
3-2-1 儲氫合金粉末之形貌觀察 22
3-2-2 儲氫合金粉末之性質分析 23
3-3 儲氫系統之製作與模具組裝 24
3-4 儲氫系統測試 24
第四章 實驗結果 31
4-1 儲氫合金粉末外觀形貌觀察 31
4-2 儲氫合金粉末之ICP分析 32
4-3 儲氫合金粉末之性質分析 32
4-3-1 儲氫合金粉末X光繞射分析 32
4-3-2 儲氫合金粉末DSC與DTA分析 33
4-3-3 儲氫合金粉末EDS成分分析 35
4-4 儲氫合金粉末之吸放儲氫性質 35

第五章 討論 84
5-1 EDA製備之儲氫合金粉末性質探討 84
5-2 不同放電合金化參數對Mg-Ni合金粉末鎳含量之影響 84
5-3 鎳含量對Mg-Ni合金粉末儲氫能力之影響 85
5-4 粉末結晶性對儲氫能力之影響 85
5-5 Mg-Ni合金粉末吸氫初始溫度與吸氫量之加工參數效應探討 85
第六章 結論 99
參考文獻 100
自述 104

[1]H. M. Lin, S. K. Kuralay, J. Y. Uan,“Microstructural and Corrosion Characteristics of Iron-Silicon Alloyed
Layer on 5083 Al Alloy by Electrical Discharge Alloying Processing”. Materials Transactions, Vol. 52, No.
3,pp.514-520, 2011.
[2]林宏茂,呂傳盛,陳緯哲,張凱斌, “球墨鑄鐵放電合金化改質特性之電極材料效應探討”, 鑄造工程學刊 第34卷 第3期 (第138期),
pp.27-35, 2008.
[3]呂傳盛,洪飛義,林宏茂, “合金粉末製造方法”, 中華民國專利發明證書號數:I300370.
[4]G. Boothroyd, A. K. Winston,“N on-conventional Machining proceses”, in Fundamentals of Machining and
Machine Tools,Marcel Dekker, New York,1989.
[5]J. A. McGeough, “Electrodischarge Mcchining, in Advanced Methods of Mchining”, Chapman & Hall, London, 1988.
[6]曲新生,陳發林,呂錫民, “產氫與儲氫技術,五南圖書出版公司”, p.4, 2007.
[7]U. Balachandran, T. H. Lee, S. Wang, S. E. Dorris,“Use of mixed conducting membranes to produce hydrogen
by water dissociation”,International journal of Hydrogen 29, p. 291-296, 2004.
[8]Egil Rasten, Georg Hagen, “Reidar Tunold,Electrocatalysis in water electrolysis with solid polymer
electrolyte”, Electrochimica Acta 48 , pp. 3945-3952, 2003.
[9]大角泰章, “水素吸藏合金”, p.25,136-264,378, 2003.
[10]曲新生,陳發林, “氫能技術”, 五南圖書出版公司, pp.59-60, 2006.
[11]C. Jeffrey Brinker, W. George Scherer, “Sol-gel science”,Academic press,pp.33-37 , 1990.
[12]“U.S. Department of energy (DOE)”,Basic Research Needs for the Hydrogen Economy, p.111, 2003.
[13]馬振基, “奈米材料科技原理與應用”, 全華圖書股份有限公司, pp. 29-30, 2003.
[14]曲新生,陳發林,呂錫民, “產氫與儲氫技術”, 五南圖書出版公司, p.184, 2007.
[15]R. J. Teitel, “Development Status of Microcavity Hydrogen Storage Systems for Automotive Applications”,
U.S. DOE Program Review,Upton NY, pp.153-156, 1979.
[16]曲新生,陳發林, “氫能技術”, 五南圖書出版公司, pp.62-63, 2006.
[17]Reza Abbaschian,Lara Abbaschian,Robert E.Reed-Hill,“Physical Metallurgy Principles”,CENGAGE Learning ,
pp76-90, 2010.
[18]L. Zaluski, A. Zaluska, P. Tessier, J. O. strom-Olsen, R. Schulz , “Catalytic effect of Pd on hydrogen
absorption in mechanically alloyed Mg2 Ni, LaNi5 and FeTi”, J. Alloys Comp.,217, pp.295-300, 1995.
[19]謝衍生,孫岳明,傅岩,雷立旭, “儲氫材料的發展概況”,材料報導, pp76-78, 2004.
[20]Z. G. Huang,Z. P. Guo, D. Wexler,K. Konstantinov, H. K .Liu, “Thermal stability and hydrogen storage
property of Mg1.9Cu0.1Nix(x=1.8, 1.9, 2.0 and 2.1)alloys”,Journal of alloys and compounds 426, pp.355-340,
2006.
[21]周明弘, “儲氫材料Mg2Ni生長動力學之研究”, 國立中央大學碩士論文, 2007.
[22]H. W. Wang, S. D. Chyou, S. H. Wang,M. W. Yang,C. Y. Hsu, H. C. Tien, N. N. Huang, “Amorphous phase
formation in intermetallic Mg2Ni alloy synthesized by ethanol wet milling”,Journal of Alloys and Compounds
479, pp.330–333, 2009.
[23]P. Selvam, B. Viswanathan, C. S. Swamy, V. Srinivasan, “Magnesium and magnesium alloy
hydrides”,International Journal of Hydrogen Energy, Vol. 11, Issue 3, pp.169-192, 1986.
[24]B. Vigeholm, J. Kjøller, B. Larsen, “Magnesium for hydrogen storage”, Journal of the Less Common Metals.
Vol. 74, Issue 2, pp.341-350, 1980.
[25]梁基謝夫,郭青蔚, “金屬二元系相圖手冊” ,北京化學工業出版社,2008.
[26]U.S.Naval Research Laboratory, http://www.nr1.navy.mil.
[27]陳俊仁, “EDM法製備純Sn及Sn-xSb粉末負極材料之充放電特性探討”,國立成功大學碩士論文, 2008.
[28]李勝隆,許哲瑋,周政宇,林紳運, “鎂合金產業通訊”, Vol.47, pp.42-49, 2009.
[29]Yasuhiro Kodera, Natsuki Yamasaki , Takeshi Yamamoto, Takashi Kawasaki ,Manshi Ohyanagi , Zuhair A.
Munir, “Hydrogen storage Mg2Ni alloy produced by induction field activated combustion synthesis”, Journal
of Alloys and Compounds 446–447, pp.138–141, 2007.
[30]G. Mulasa,, F. Delogu, G. Cocco, “Effects of mechanical processing on the kinetics of H2 absorption in
Mg2Ni alloys”, Journal of Alloys and Compounds 473, pp.180–184, 2009.
[31]C. K. Lin,C. K. Wang, P. Y. Lee, H. C. Lin, K. M. Lin, “The effect of Ti additions on the hydrogen
absorption properties of mechanically alloyed Mg2Ni powders”, Materials Science and Engineering A 449–
451 , pp.1102–1106, 2007.
[32]Lei Zhenglong, Liu Zuyan, Chen Yanbin, “Cyclic hydrogen storage properties of Mg milled with nickel nano-
powders and NiO”,Journal of Alloys and Compounds 470, pp.470–472, 2009.
[33]L. K. Kurihara, G. M. Chow, P.E. Schoen, “Nanocrystalline Metallic Powders and Films Produced by the
Polyol Method”, NanaShuchued Materials, Vol. 5. No. 6, pp.607-613, 1995.
[34]井上潔, “放電加工”,高立圖書有限公司, p.76, 2003.
[35]W. Koenig, D.F. Dauw, G. Levy, U. Panten, “EDM—future steps towards the machining of ceramics”, Ann. CIRP
37 (2), pp.625–631, 1998.
[36]J. A. McGeough, “Advanced Methods of Machining”, Chapman and Hall, London, pp.128-152, 1988.
[37]S. Singh, S. Maheshwari, P. C. Pandey, “Some Investigations into the Electric Discharge Machining of
Hardened Tool Steel Using Different Electrode Materials”, Journal of Materials Processing Technology, Vol.
149 , pp.272-277, 2004.
[38]J. D. Ayers, K. Moore, “Formation of Metal Carbide Powder by Spark Machining of Reactive Metals”,
Metallurgical Transactions A,Vol. 15A, pp.1117-1127, 1984.
[39]V. S. R. Murti, P. K. Phillip, “An Analysis of the Debris in Ultrasonic-Assisted Electrical Discharge
Machining”, Wear, Vol. 117, pp.241-250, 1987.
[40]A. K. Khanra, L. C. Pathak, M. M. Godkhindi, “Microanalysis of Debris Formed during Electrical Discharge
Machining (EDM)”,Journal of Materials Science, Vol.42 , pp.872-877, 2007.
[41]J. K. Lung, J. C. Huang, D. C. Tien, C. Y. Liao, K. H. Tseng, T. T. Tsung, W. S. Kao, T. H. Tsai, C. S.
Jwo, H. M. Lin, L. Stobinski, “Preparation of Gold Nanoparticles by Arc Discharge in Water”, Journal of
Alloys and Compounds, Vol. 434 , pp.655-658, 2007.
[42]C. H. Lo, T. T. Tsung, H. M. Lin, “Preparation of Silver Nanofluid by the Submerged Arc Nanoparticle
Synthesis System (SANSS)”,Journal of Alloys and Compounds, Vol. 434, pp.659-662, 2007.
[43]C. H. Lo, T. T. Tsung, L. C. Chen, “Shape-Controlled Synthesis of Cu-Based Nanofluid Using Submerged Arc
Nanoparticle Synthesis System (SANSS)”, Journal of Crystal Growth, Vol. 277, pp.636-642, 2005.
[44]B. H. Yan, C. C. Wang, “The Machining Characteristics of Al2O3/6061 Al Composite Using Rotary Electro-
Discharge Machining with a Tube Electrode”, Journal of Materials Processing Technology, Vol.95 , pp.222-
231, 1999.
[45]Q. H. Zhang, R. Du, J. H. Zhang, Q. B. Zhang, “An Investigation of Ultrasonic-Assisted Electrical
Discharge Machining in Gas”, International Journal of Machine Tools and Manufacture, Vol. 46, pp.1582-
1588, 2006.
[46]Y. C. Lin, B. H. Yan, Y. S. Chang, “Machining Characteristics of Titanium Alloy (Ti-6Al-4V) Using a
Combination Process of EDM with USM”, Journal of Materials Processing Technology, Vol. 104, pp.171-177,
2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top