跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林明潔
研究生(外文):Lin,Ming-Chieh
論文名稱:6069鋁合金熱加工性探討
論文名稱(外文):Hot workability 6069 Al alloy using processing map
指導教授:吳泓瑜
指導教授(外文):Wu,Horng-yu
學位類別:碩士
校院名稱:中華大學
系所名稱:機械工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:57
中文關鍵詞:6069鋁合金組合方程式製程加工圖動態回復動態再結晶
外文關鍵詞:6069 Al alloyconstitutive equationprocessing mapdynamic recoverydynamic recrystallization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1713
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用經過均質化處理的6069鋁合金鑄錠,以熱壓縮實驗探討6069鋁合金高溫變形特性以及材料加工性,其熱變形溫度範圍為300 ~ 550 ℃,應變速率範圍為1×10−3~10 s−1,真應變則為0.7。主要使用雙曲線正弦函數(Hyperbolic sine law)計算組合方程式的結構參數,同時觀察變形後試件之顯微結構,以分析熱變形條件對微結構影響。透過製程加工圖以及變形後試件之顯微結構來探討6069鋁合金鑄錠熱變形及加工性的影響。
研究顯示,在6069鋁合金高溫變形時,可以雙曲線正弦函數表示應變速率、溫度及應力之關係。而由組合方程式所得之應力指數n值為5.78、活化能Q值為171kJ/mol。
利用這些壓縮數據製作製程加工圖,用以確定可加工區域。此安全加工區可分為動態回復和動態再結晶。根據金相顯微結構研究顯示,顯微組織的變化和功率消耗效率有關,動態回復發生在功率消耗效率數值約中間的區域,而部份動態再結晶則發生在數值較高的區塊。研究指出,在不穩定區中,不穩定流與局部金屬流有極大的相關性。在應變速率敏感指數m等值圖上顯示,因為m值較低,因此發現有局部金屬流。由再結晶驅動力的角度來觀察,在部份動態再結晶中可以發現,溫度增加,其活化能越低。

The hot workability of homogenized 6069 Al alloy cast ingot was examined via hot compression tests. These tests were conducted using Gleeble-3500 thermal simulation machine within a temperature range of 300 °C to 550 °C and a strain rate range of 0.001 s−1 to 10 s−1. Hyperbolic sine law was used to study the constitutive behavior during hot compression. Optical microscopy analysis was performed to explore the effect of hot deformation conditions on the microstructural changes. By using processing map and microstructure to analyze that the temperature strain rate and homogenization of the high temperature deformation behavior of 6069 Al alloy impacted on the hot deformation and working properties.
In the constitutive analysis, stress multiplier α was treated as constant in the hyperbolic constitutive equation. Constitutive parameters were estimated based on the maximum flow stresses. The obtained stress exponent n and activation energy Q were 5.78 and 171 kJ/mol, respectively.
The compression data were then used to construct a processing map, through which a safe processing region was identified. The safe processing region could be divided into dynamic recovery and dynamic recrystallization domains. The variation in microstructure was related to the variation in efficiency of power dissipation, as indicated by microstructure observations. Dynamic recovery was observed in regions associated with the intermediate efficiency of power dissipation, whereas partial dynamic recrystallization occurred in regions with high efficiency. Flow instability was found to be related to flow localization. The strain rate sensitivity m map showed that flow localization occurred because of the deformation conditions with low m values. The kinetic analysis revealed a decrease in apparent activation energy with increased temperature in the partial dynamic recrystallization region.

摘要 i
ABSTRACT ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 研究方法與目的 1
第二章 文獻回顧 2
2-1 基礎性質 2
2-1-1 6069鋁合金相關文獻回顧 2
2-1-2 均質化 3
2-1-3 回復 4
2-1-4 再結晶 5
2-2 組合方程式 6
2-3 製程加工圖 9
2-3-1功率消耗率圖(Efficiency of power dissipation map) 10
2-3-2 不穩定圖(Instability map) 11
2-4 Gleeble 3500型熱加工模擬機 12
第三章 實驗方法與步驟 13
3-1 實驗材料 13
3-2 實驗步驟 13
3-2-1 壓縮實驗 13
3-3 金相顯微結構 14
第四章 結果與討論 15
4-1 流變行為 15
4-2 製程加工圖結果分析 16
4-2-1 功率消耗效率圖(Efficiency of power dissipation map)結果分析 16
4-2-2 不穩定性圖結果 17
4-2-3 製程加工圖結果 17
4-3顯微結構結果分析 18
4-3-1 製程加工圖之顯微結構分析 18
4-3-2 m值分析 20
4-4 動能分析 20
4-4-1 組合關係分析 20
4-4-2 Z值對微結構之影響 22
第五章 結論 25
參考文獻 26

[1] T. Nicholas, Tensile Testing of Materials at High Rates of Strain, Experimental Mechanics, 21, 177-185, 1981.
[2] J. Harding, L. M. Welsh, A Tensile Testing Technique for Fibre-Reinforced Composites at Impact Rates of Strain, Journal of Materials Science, 18, 1810-1826, 1983.
[3] Bergsma SC, Kassner ME, Li X, Delos-Reyes MA, Hayes TA (1996) The Optimized Mechanical Properties of the New Aluminum Alloy AA 6069. J Mater Eng Perform 5:111–1116
[4] Bergsma SC, Kassner ME, Li X, Wall MA (1998) Strengthening in the new aluminum alloy AA 6069. Mater Sci Eng A 254:112–118
[5] MacMaster FJ, Chan KS, Bergsma SC, Kassner ME (2000) Aluminum alloy 6069 part II: fracture toughness of 6061-T6 and 6069-T6. Mater Sci Eng A 289:54–59
[6] Cai M, Field DP, Lorimer GW (2004) A systematic comparison of static and dynamic ageing of two Al–Mg–Si alloys. Mater Sci Eng A 373:65–71
[7] Li X, Kassner ME, Bergsma SC (2000) Recrystallization Behavior of Rolled Ingots of 6061 and 6069 Aluminum Alloys. J Mater Eng Perform 9:416–423
[8] Li HZ, Jiang J, Deng M, Liang XP (2014) Hot deformation behavior and microstructure of 6069 aluminm alloy. Mater Sci Forum 788:201–207
[9] Kassner ME, Geantil P, Li X (2011) A Study of the Quench Sensitivity of 6061-T6 and6069-T6 Aluminum Alloys. J Metall 2011:Article ID 747198, 5 pages.
[10]Li B, Pan QL, Zhang ZY, Li C (2012) Characterization of flow behavior and microstructural evolution of Al–Zn–Mg–Sc–Zr alloy using processing maps. Mater Sci Eng A 556:844–848
[11]Jenab A, Karimi Taheri A (2014) Experimental investigation of the hot deformation behavior of AA7075: Development and comparison of flow localization parameter and dynamic material model processing maps. Int J Mech Sci 78:97–105
[12]Li HZ, Wang HJ, Liang XP, Liu HT, Liu Y, Zhang XM (2011) Hot deformation and processing map of 2519A aluminum alloy. Mater Sci Eng A 528:1548–1552
[13]Lin YC, Li LT, Xia YC, Jiang YQ (2013) Hot deformation and processing map of a typical Al–Zn–Mg–Cu alloy. J Alloy Compd 550:438–445
[14]Meng G, Li BL, Li HM, Huang H, Nie ZR (2009) Hot deformation and processing maps of an Al–5.7 wt.%Mg alloy with erbium. Mater Sci Eng A 517:132–137
[15]Chen B, Tian XL, Li XL, Lu C (2014) Hot Deformation Behavior and Processing Maps of 2099 Al-Li Alloy. J Mater Eng Perform 23;1929–1935
[16]Rajamuthamilselvan M., Ramanathan S (2011) Hot deformation behaviour of 7075 alloy. J Alloy Compd 509:948–952
[17]Cepeda-Jiménez CM, Ruano OA, Carsí M, Carreño F (2012) Study of hot deformation of an Al–Cu–Mg alloy using processing maps and microstructural characterization. Mater Sci Eng A 552:530– 539
[18]Luo L, Li MQ, Ma DW (2012) The deformation behavior and processing maps in the isothermal compression of 7A09 aluminum alloy. Mater Sci Eng A 532:548– 557
[19] H.E.Hu , L.Zhen , L.Yang , W.Z.Shao , B.Y.Zhang , Deformation
behavior and micorstructure evolution of 7050 aluminum alloy during high temperature deformation , Materials Science and Engineering A 488 (2008) 64-71.
[20] D. Kuhlmann-Wilsdorf and J.H.Vander Merwe,Mater.Sci.55 (1982),79
[21] R.W. Cahu and P. Haaser , "Physical Metallurg", Vol.3, PART 2 (1983) p.1596
[22] J.F. Humphreys and M. Hatherly, “Recrystallization and related annealing phenomena”, Oxford, UK, Pergamon, Tarrytown, N. Y., U.S.A., 1996, p.363.
[23] M.M. Myshlyaev, A. Mwembela, H.J., Can. Metal. Quart., 42 (2002) 97.
[24] H.J. McQueen, D.L. Bourell, J. Mat. Shaping, Tech., 5 (1987) 53.
[25] A. Mwembela, E.V. Konopleva, H.J. McQueen, Scr. Mater., 37(1997) 1789.
[26] H.T. Zhou, X.Q, Zeng, C.J. Ma and W.J. Ding, Acta Metall. 17 (2004) 155.
[27] F.A. Mohamed, T.G. Langdon, Acta Metall., 22 (1974) 779.
[28] F.A. Mohamed, Mater. Sci. Eng.A, 38 (1979) 73.
[29] O.D. Sherby, P.M. Burke, Prog. Mat. Sc., 13 (1967) 325.
[30]Frost HJ, Ashby MF (1982) Deformation-mechanism maps: The plasticity and creep of metals and ceramics. Pergamon Press, London
[31]Prasad YVRK, Sasidhara S (1997) Hot working guide—A compendium of processing maps, ASM International, Materials Park, Ohio
[32] Y.V.R.K. Prasad, S. Sasidhara, Hot Working Guide—A Compendium of Processing
Maps, ASM International, Ohio, 1997.
[33] Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark,
D.R. Barker, Metall. Trans. A 15A (1984) 1883–1892.
[34]]H.L. Gegel, J.C. Malas, S.M. Doraivelu, in: Innovations in materials processing, G. Bruggeman and V. Weiss (Eds.), Plenum Press, New York (1985) p. 137.
[35]H.J. Frost, M.F. Ashby, Deformation Mechanism Maps, Pergamon Press, London (1982).
[36] H.Ziegler, Progress in solid mechanics, Vol. 4, I.N. Sneddon and R. Hill (Eds.), John Wiley and Sons, New York (1963) p. 93.
[37] Y.V.R.K. Prasad, Indian J. Technol. 28 (1990) 435.
[38] Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15 (1984) 1883.
[39] S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, J.M. Cabrera, J. Alloys Compd.509(2011) 3806-2810,p. 3 .
[40] M.M. Myshlyaev , H.J. McQueen , A. Mwembela , E. Konopleva, Mater. Sci. Eng.A 337 (2002) 121-133,p. 3 .
[41] B. Bozzini, E. Cerri, Mater. Sci. Eng. A 328 (200) 344.
[42] Z. Gronostajski, J. Mater. Process. Technol. 125-126 (2002)
[43] C.Y. Wang, X.J. Wang, H. Chang, K. Wu, M.Y. Zheng, Mater. Sci. Eng. A 464 (2007) 52.
[44] L.E. Murr and E.V. Esquivel, Observations of common microstructural issues associated with dynamic deformation phenomena: Twins, microbands, grain size effects, shear bands, and dynamic recrystallization, J. Mater. Sci., 2004, 39, p 1153–1168
[45] G.A. Li, L. Zhen, C. Lin, R.S. Gao, X. Tan, and C.Y. Xu, Deformation localization and recrystallization in TC4 alloy under impact condition, Mater. Sci. Eng. A, 2005, 395, p 98–101
[46] Y.B. Xu, Y.L. Bai, and M.A. Meyers, Deformation, phase transformation and recrystallization in the shear bands induced by high-strain rate loading in Titanium and its alloys, J. Mater. Sci. Technol., 2006, 2, p 737–744
[47] Y.B. Xu, W.L. Zhong, Y.J. Chen, L.T. Shen, Q. Liu, Y.L. Bai, and M.A. Meyers, Shear localization and recrystallization in dynamic deformation of 8090 Al–Li alloy, Mater. Sci. Eng. A, 2001, 299, p 287–295
[48] S.E. Hsu, G.R. Edwards, and O.D. Sherby, Influence of texture on dislocation creep and grain boundary sliding in fine-grained cadmium, Acta. Metall., 1983, 31, p 763–772
[49] H.J. McQueen and J.E. Hockett, Microstructures of aluminum compressed at various rates and temperatures, Met. Trans., 1970, 1, p 2997–3004


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊