跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 04:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林亞頡
研究生(外文):YA CHIEH
論文名稱:利用PDMS微流道做出三維的細胞培養
論文名稱(外文):3D Cell Cultured By PDMS Based Microfluidic Device
指導教授:林耿慧
指導教授(外文):KENG HUI LIN
學位類別:碩士
校院名稱:國立中央大學
系所名稱:生物物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
畢業學年度:98
語文別:英文
論文頁數:53
中文關鍵詞:利用PDMS微流道做出三維的細胞培養
外文關鍵詞:3D Cell Cultured By PDMS Based Microfluidic Devi
相關次數:
  • 被引用被引用:1
  • 點閱點閱:646
  • 評分評分:
  • 下載下載:163
  • 收藏至我的研究室書目清單書目收藏:0
微流道現在是一個很新又熱門的科學,由於製程技術的進步,使得微流道的運用也越來越廣。利用PDMS微流道裝置來製作體積比例很高且大小一致的微小明膠泡泡,收集完利用低溫成膠在經過戊二醛的化學固定後,放入高真空箱,使內外環境的壓力差將氮氣排出後,便可以得到一個大小均一的中空六角形多邊形結構。藉由排出氣體的動作,使得大小均一的蜂窩狀明膠結構是開放式的空腔。由於明膠的材料可用在細胞培養,因此在植入細胞後,可以觀察到細胞的生長情況是健康的。最後再利用PDMS做出迷你的擴散裝置,來做毒物測試,此PDMS裝置能使明膠骨架中的一半細胞死亡,另一半則不受影響。藉由結果可以知道, PDMS裝置可以快速且穩定的製作泡泡,得到大小一致的空腔開放式結晶型明膠骨架。種入細胞後的骨架搭配迷你裝置在未來不管是做細胞分化的觀察以及人工組織的定量分析一定會有相當大的幫助。
Microfluidics has become widely popular in the past decade and shows many applications from PCR, Cell sorting, single cell analysis, and so on.
In this thesis, I show a new application to fabricate 3D ordered scaffolds for 3D cell cultures and to create a concentration gradient in such scaffolds.
Our strategy to create scaffolds is to generate monodisperse bubbles in gelatin and to collect them. At high gas fraction, monodisperse bubbles self-assemble into crystallized foam structures. Next we congeal the gelatin solution make solid foam by lowering the temperature and crosslink with glutaraldehyde before the coarsening of bubbles. Finally, we degas the solid gel foam by immersing foam in liquid media under vacuum. The facet between the cells in the solid foam will be burst due to the pressure difference inside the foam and the ambient. The open solid foam is readily to be served as scaffold and seeded with cells. Cells proliferate inside the scaffolds.
We also construct static reservoir systems to create a concentration gradient. We show the cells respond to the concentration gradient of surfactant triton-X100 by a dead-live assay.
1. Introduction‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐1
2. Background ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐2
2.1. Lab on chip‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐2
2.2. Tissue engineering‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐3
2.3. Materials for manipulating scaffold‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐4
2.3.1. Gelatin‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐4
2.3.2. Alginate‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐5
2.3.3. Collagen‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐5
3. Experimental and Result‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐6
3.1. Microfluidic device design concept‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐6
3.1.1. Flow focusing channel design‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐6
3.1.2. Control valve channel design‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐8
3.1.3. Channel design on AUTOCAD‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐9
3.2. The processing for SU8 photoresist‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐11
3.2.1. Multilayer photoresist manufacture‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐16
3.3. Micro channel fabrication by PDMS‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐17
3.3.1. What is PDMS? ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐17
3.3.2. Replica molding of PDMS from the masters‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐18
3.4. Device setup and operation ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐19
3.4.1Materials ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐19
3.4.2 Fuidic device for cytotoxicity assay‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐20
3.5. Thermoelectric coolers ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐21
3.6 Emulsion generation ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐23
3.6.1 Collect in disassemble reservoir with crystallization‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐24
3.6.2 Emulsion gelled‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐25
3.7. Bubble generation‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐26
3.7.1. Collect in disassemble reservoir‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐27
3.7.2. Gel bubble crystal ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐28
3.7.3. Hollowed gelatin scaffold‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐30
3.7.4. Concentration gradient from center of channel‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐31
3.7.5. Cell seeding‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐33
3.7.6‐1 Cytotoxicity assay for HeLa and fibroblast ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐35
3.7.6‐2 Cytotoxicity assay of Fibroblast in minifluidic device‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐37
4. Conclusion and outlook‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐38
Reference ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐40
Reference

1) A. M. Ganan-Calvo and J. M. Gordillo, Phys. Rev. Lett. 87, 274501 (2001).

2) G. R. Yi, T. Thorsen, V. N. Manoharan, M. J. Hwang, S. J. Jeon, D. J. Pine, S. R. Quake, and S. M. Yang, Adv. Mater. Weinheim, Ger. 15, (2003).

3) T. Y. Gong, J. Y. Shen, Z. B. Hu, M. Marquez, and Z. D. Cheng, Langmuir 23, 2919 (2007).

4) S. L. Anna, N. Bontoux, and H. A. Stone, Appl. Phys. Lett. 82, 364 (2003).

6) Younan Xia and George M. Whitesides, “Soft Lithography”, Angew. Chem. 37, 550-575, (1998)

7) Younan Xia and George M. Whitesides, “Soft Lithography”, Annual Reviews.Science 28, 153-184, (1998)

8) Linear PolydimethylsiloxanesJoint Assessment of Commodity Chemicals26p. 1 (09.1994)

9) Anne M Taylor, Mathew Blurton-Jones, Seog Woo Rhee, David H Cribbs, Carl W ,Cotman & Noo Li Jeon, Nature Methods 2, 599 - 605 (2005)

10) A. J. Blake, T. M. Pearce, N. S. Rao, S. M. Johnson and J. C. Williams, Lab Chip, 2007, 7, 842 – 849 (2007)

11) Haejune Kim, Dawei Luo, Darren Link, Manuel Marquez, Zhengdong Cheng, David A. Weitz APPLIED PHYSICS LETTERS 91, 133106 (2007)

12) P. S. Dittrich and A. Manz, Nat. Rev. Drug Discovery 5, 210 ,(2006).


13) Rhutesh K. Shah a, Jin-Woong Kim ab, Jeremy J. Agresti a, David A. Weitz *ac and Liang-Yin Chu Soft Matter 2008 10.1039/b808653m


14) Stephan K. W. Dertinger, Xingyu Jiang, Zhiying Li, Venkatesh N.
Murthy and George M. Whitesides, 10.1073/pnas.192457199 (2002)

15) Christian H. J. Schmitz, Amy C. Rowat,‡ Sarah Ko‥ster and David A.
Weitz, lab on chip ,10.1039/b809670h (2008)

16) Petra Eiselt, Julia Yeh, Rachel K. Latvala, Lonnie D. Shea, David J.
Mooney, Biomaterials 21 1921-1927 (2000)

17) Langer R, Vacanti JP. Tissue engineering. Science; 260:920-6. (1993)

18) Ward, A.G.; Courts, A. The Science and Technology of Gelatin. (1977)


19) Gloria A. Di LulloDagger , Shawn M. Sweeney, Jarmo Körkkö, Leena Ala-Kokko, and James D. San Antonio; J. Biol. Chem., Vol. 277, Issue 6, 4223-4231, (2002)

20) Minseok S. Kim • Ju Hun Yeon • Je-Kyun Par, Biomed Microdevices 9:25–34, (2007)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top