跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 06:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張如慧
研究生(外文):Ru-Hui Chang
論文名稱:白腐真菌漆氧化酵素之純化與染料褪色能力之探討
論文名稱(外文):Laccase Purification and Characterization From the White Rot Fungi and Decolorization of Dyes by the Enzyme
指導教授:趙維良趙維良引用關係
指導教授(外文):Wei-Liang Chao
學位類別:碩士
校院名稱:東吳大學
系所名稱:微生物學系
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:117
中文關鍵詞:白腐真菌漆氧化酶
外文關鍵詞:white rot fungilaccasenative page
相關次數:
  • 被引用被引用:6
  • 點閱點閱:727
  • 評分評分:
  • 下載下載:107
  • 收藏至我的研究室書目清單書目收藏:0
漆氧化酶為白腐真菌(white rot fungi)之特有胞外木質素分解酵素系統 (extracellular ligninolytic enzyme system),主要的組成酵素之一。其為一多功能酵素,可催化多樣多種的反應,被廣泛的應用於紙漿造紙中的紙漿漂白、環境污染物去毒性作用、處理工業工廠之廢水及紡織和染料工業之染料脫色等。本實驗之目的便是將前研究人員從土壤中所分離出,能產生極佳的漆氧化酶活性之白腐真菌分離株A8,進行分離株A8之菌種鑑定,以傳統鏡檢方法及分子生物學方法-18S rDNA及ITS序列定序,分析分離株A8之類緣關係;並以蛋白質電泳膠體活性染色(Native-PAGE)分析此分離株所產之漆氧化酶,發現分離株A8於液態培養下能產生四種漆氧化酶(laccase isoforms,標示為L1、L2、L3及L4);使用硫酸胺沈澱、透析、陰離子交換樹脂等方法分離純化出此分離株之多種漆氧化酶,將純化後之漆氧化酶經由二維蛋白質電泳(Two-dimensional SDS polyacrylamide gel electrophoresis)分離後,結合液相層析串聯質譜儀 ( LC/MS/MS ) 對蛋白質peptide進行序列分析,再進行database比對鑑定;同時亦探討有無人工介質存在下,此分離株之漆氧化酶對偶氮染料褪色之能力。結果顯示,分離株A8之18S rDNA序列與Spongipellis unicolor及Cerrena unicolor最為靠近;液體培養下之分離株A8能產生高量蛋白質(5 mg/mL);laccase L1(本實驗標示)與Spongipellis sp. FERM P-18171之laccase 1 precursor與laccase 2 precursor皆有100 %相符合之peptide序列(matched peptides)。此外,分離株A8之漆氧化酶能夠降解偶氮染料,於50 mM ABTS人工介質存在下,酵素對染料之退染效果更加明顯,一天內可褪色剛果紅55 %以上,而經純化後之laccase L1三天的時間可以褪色橙G(orange G)93 %以上。
Laccase is one of the ligninolytic enzymes produced by white rot fungi which is a very versatile enzyme. It has been used extensively in pulp and paper industry, detoxifying the environmental pollutants, and food and cosmetic industries. The purposes of this study are to (1) provide identification of isolate A8, a wood rot fungus which excrete high amount of laccase, using both traditional and molecular biology technique; (2) purify and characterize laccase(s) produced by isolate A8; (3) evaluate the efficiency of decoloration activities of laccase produced by isolate A8. Based on ITS (internal transcribed spacer) and 18S rDNA (small-subunit) sequences information, isolate A8 was shown to be a member that related to Polyporaceae and can be grouped with Spongipellis unicolor and Cerrena unicolor in the same cluster. When cultural supernatant of isolate A8 was analyzed using Native-PAGE (polyacrylamide gel electrophoresis) with ABTS (2, 2’-azinobis 3-ethylbenzathiozone-6-sulfonic acid) as the substrate, four laccase isoforms (L1, L2, L3, and L4) were observed. Strain A8 produced high amount of protein in the culture liquid, about 0.5 milligram per milliliter. Purification of laccase was done by following the procedure described below. Proteins in the cultural supernatant were first precipitated by adding ammonium sulfate to the supernatant. After the salt in the precipitate was removed through dialysis against 0.01 M phosphate buffer (pH 7.0), they were concentrated by ultrafiltration using a membrane with molecular weight cutoff at 10K. The concentrated sample was applied to a DEAE-cellulose anion – exchange column that was pre-equilibrated with 0.01 M phosphate buffer (pH 7.0). The column was then eluted with a linear gradient of 0 to 1 M NaCl in the same buffer and a major protein peak was observed between fraction 35 (with 5 ml a fraction). Activity assay revealed that samples in this peak also showing high laccase activity, about 94591 units per milligram of protein. The purified strain A8 laccases were then analyzed with two-dimension SDS polyacrylamide gel electrophoresis and LC/MS/MS. Comparison of amino acid sequences of the four fragments of purified laccase L1 with the NCBI enzyme database showed 91~100% sequence similarity with laccase 1 precursor fragments encoded by Spongipellis sp. FERM P-1817. For the decolorization studies, crude and purified laccase was added to the dye (congo red and orange G) solution to a final concentration of 5 U/ml. For orange G, more than 93% of the dye added was decolorized in three days. By adding low concentration (50 μM ABTS) of mediator in the treatment process, we can effectively increased the range and rate of decolorization. For example, the original recalcitrant congo red can then be decolorized up to 55% by crude laccase preparation in 24 hours.
摘要………………………………………………………………………I
Abstract……………………………………………………………..III
目錄……………………………………………………………………..V
表目錄……………………………………………………………...VIII
圖目錄………………………………………………………………….IX
前言……………………………………………………………………..1
一、 白腐真菌之胞外木質素分解酵素系統…………………...1
二、 漆氧化酶(laccase)之結構及去酚作用機制………………4
三、 漆氧化酶(laccase)之應用…………………………………7
四、 本實驗之目的………………………………………………11
材料方法……………………………………………………………….12
一、 菌株來源……………………………………………………12
二、 藥品與器材設備……………………………………………12
三、 絲狀真菌之保存……………………………………………13
四、 分離株A8外觀型態之鑑定………………………………..15
五、 分子生物學rDNA與ITS序列分析之鑑定………………….16
六、 分離株A8產漆氧化酶之培養………………………………19
七、 漆氧化酶活性測定…………………………………………20
八、 蛋白質濃度測定……………………………………………22
九、 分離株A8漆氧化酶之純化…………………………………23
十、 蛋白質電泳膠體分析………………………………………26
十一、二維蛋白質電泳(2-D)…………………………………………27
十二、液相層析串聯質普儀(LC/MC/MC)定序分析……………….35
十三、酵素之染料褪色實驗………………………………………….36
結果…………………………………………………………………….39
一、 白腐真菌分離株A8外觀型態之鑑定………………………39
二、 分子生物學rDNA與ITS序列分析之鑑定………………….39
三、 蛋白質電泳膠體分析與分離株A8 漆氧化酶之純化…….44
四、 二維蛋白質膠體電泳分析與蛋白質氨基酸序列分析....46
五、 褪色染料實驗....................................48
討論…………………………………………………………………….52
一、 白腐真菌分離株A8之鏡檢與分子生物學方法之鑑定……52
二、 蛋白質電泳膠體分析……………………………………..56
三、 分離株A8 漆氧化酶之純化……………………………….57
四、 漆氧化酶序列分析…………………………………………59
五、 褪色染料實驗....................................61
結論…………………………………………………………….......63
參考文獻……………………………………………………………….65
圖表…………………………………………………………………….75
附錄一、………………………………………………………………112
附錄二、…………………………………………………………....113
附錄三、……………..………………………………………………114
附錄四、…………………………..…………………………......115
附錄五、.…………………………………………………………...116
附錄六、................................................117
賽逸昕. (2005) 探討白腐真菌之漆氧化酵素的最佳生產條件. 東吳大學微生物學系碩士論文. 台北.

高強、吳品珊、戴良英和朱水芳,2004,分子生物學技術在腥黑粉菌種間分類鑒定的應用,植物檢疫,18: 355-359。

Abadulla E., T. Tzanov, S. Costa, K. H. Robra, A. C. Paulo, G. M. Gübitz. 2000. Decolorization and detoxification of texile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66: 3357-3362.

Alfred MM., and RC. Staples. 2002. Laccase: new functions for an old enzyme. Phytochemistry. 60: 551-565.

André B. dos Santos, MP. de Madrid, FAM. de Bok, AJM. Stams, JB. van Lier, and FJ. Cervantes. 2006. The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium. Enzyme Microb. Technol. 39: 38-46.

Andrea Z., G. Barbara, R. Astrid, and C. P. Artur. 2005. Degradation of azo dye by Trametes villosa laccase over long periods of oxidative conditions. Appl Environ Microbiol 71: 6711-6718.

Aramayo R, and W. E. Timberlake. 1990. Sequence and molecular structure of the Aspergillus nidulans yA (laccase 1) gene. Nucleic Acids Res. 18: 3415.

Arora SD., and PK. Gill. 2001. Effect of various media and supplements on laccase production by some white rot fungi. Biores. Technol. 77: 89-91.

Belloch C., FE. Teresa, Q. Amparo, G. M. Dolores, and B. Eladio. 2002. An analysis of inter- and intraspecific genetic variabilities in the Kluyveromyces marxianus group of yeast species for the reconsideration of the K. lactis taxon. Yeast. 19: 257–268.

Bergbauer M, C. Eggert, G. Kraepelin. 1991. Degradation of chlorinated lignin compounds in a bleach plant effluent by the white-rot fungus Trametes versicolor. Appl. Microbiol. Biotechnol. 35: 105–109.

Bollag J. M.. 1992. Decontaminating soil with enzymes. Environ Sci. Technol. 26: 1876–1881.

Bourbonnais, R., and M. G. Paice. 1990. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 267: 99–102.

Breen, A., and F. L. Singleton. 1999. Fungi in lignocellulose breakdown and biopulping. Curr. Opin. Biotechnol. 10:252-258.

Call, H.P., I. Mücke. 1997. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozyme®-process). J. Biotechnol. 53:163-202

Camarero S., D. Ibarra, MJ. Martínez, and ÀT. Martínez. 2005. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl. Envir. Microbiol. 71: 1775-1784.

Chao W. L., and SL. Lee. 1994. Decoloration of azo dyes by three white rot fungi: influence of carbon source. World j. microbiol. biotechnol. 10: 556-559.

Charles J., M. Moeder, G. Krauss, C. Martin1, and D. Schlosser. 2005. Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiol. 151: 45-57.

Chung K. T., and S. E. Stevens, Jr. 1993. Decolorization of azo dyes by environmental microorganisms and helminthes. Environ. Toxicol. Chem.
12: 2121–2132.

Claus, H. 2004. Laccases: structure, reactions, distribution. Micron. 35: 93-96.

Couto S. R., and J. L. T. Herrera. 2006. Industrial and biotechnological applications of laccases : A review. Biotechnol. Adv. ??: ???- ???

Cripps C., JA. Bumpus, and SD. Aust. 1990. Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl. Envir. Microbiol. 56: 1114-1118.

d'Acunzo, F., Galli, C., and Masci., B. 2002. Oxidation of phenols by laccase and laccase-mediator systems. Solubility and steric issues. Eur. J. Biochem. 269: 5330–5335.

Dietrich, D., W. J. Hickey, and R. Lamar. 1995. Degradation 4,4’-dichlorobiphenyl, 3,3’, 4,4’-tetrachlorobiphenyl, and 2,2’, 4,4’, 5,5’-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 61: 3904–3909.

Doyle JJ., and KL. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12 : 13-15.

D'Souza, T. M., C. S. Merritt, and C. A. Reddy. 1999. Lignin-Modifying Enzymes of the White Rot Basidiomycete Ganoderma lucidum. Appl. Environ. Microbiol. 65: 5307-5313.

Duran N., and E. Esposito. 2000. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ. 28: 83-99.

Duran, N., M. A. Rosa, A. D’Annibale, and L. Gianfreda. 2002. Application of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb. Technol. 31:907-931.

Eggert, C., U. Temp, J. F.D. Dean, K.-E. L. Eriksson. 1996. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 391: 144-148.

Ewald S., KA. Jensen, JR., S. Kawai, and KE. Hammel. 1997. Evidence that Ceriporiopsis subvermispora degrades nonphenolic Lignin structures by a One-Electron-Oxidation mechanism. Appl. Environ. Microbiol. 36: 4435-4440.

Frédéric H. P., G. V. B. Reddy, N. J. Blackburn, and M. H. Gild. 1998. Purification and characterization of laccases from the white-rot basidiomycetes Dichomitus squalens. Arch. Biochem. Biophys. 353: 349-355.

Ghindilis A. 2000. Direct electron transfer catalysed by enzymes: application for biosensor development. Biochem. Soc. Trans. 28: 84–89.

Gianfreda L., F. Xu, J-M Billag. 1999. Laccases: a useful group of oxidoreductive enzymes. Bioremediat J. 3: 1-25.

Glenn, J. K., and M. H. Gold. 1983. Decolorization of Several Polymeric Dyes by the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 45: 1741-1747.

Héla Z. M., M. Tahar, D. Abdelhafidh, S. Sami, T. M. Angel, and J. M. Maria. 2006. Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme. Enzyme Microb Technol. 39: 141-148.

Hoshida H, M. Nakao, H. Kanazawa, K. Kubo, T. Hakukawa, K.
Morimasa, R. Akada, and Y. Nishizawa. 2001. Isolation of five laccase gene sequences from the white rot fungus Trametes sanguinea by PCR, and cloning, characterization and expression of the laccase cDNA in yeasts. J Biosci. Bioeng. 92:372–380.

Huttermann A, C. Mai, A. Kharazipour. 2001. Modification of lignin for the production of new compounded materials. Appl. Microbiol. Biotechnol. 55: 387–394.

Hyunchae J., F. Xu., and K. Li. 2002. Purigication and characterization of laccase from wood-degrading fungus Trichophyton rubrum LXY-7. Enzyme Microb. Technol. 30: 161-168.

Johannes, C., and A. Majcherczyk. 2000. Natural Mediators in the Oxidation of Polycyclic Aromatic Hydrocarbons by Laccase Mediator Systems. Appl. Environ. Microbiol. 66: 524–528.

Jönsson L., M. Saloheimo, and M. Penttil. 1997. Laccase from the white-rot fungus Trametes versicolor: cDNA cloning of lcc1 and expression in Pichia pastoris. Curr Genet. 32: 425–430.

Karahanian E, G. Corsini, S. Lobos, and R. Vicuna. 1998. Structure and expression of a laccase gene from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochim Biophys Acta. 1443: 65–74.

Kirby N., R. Marchant, and G. McMullan. 2000. Decolourisation of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiol. Lett. 188: 93–96.

Kirk T. K., and R. L. Farrell. 1987. Enzymatic "combustion": the microbial degradation of lignin. Annu. Rev. Microbiol. 41:465-505.

Kuhad RC., A. Singh, and KEL. Eriksson. 1997. Microorganisms and enzymes involved in the degradation of plant fiber cell wall. In: Eriksson KEL, editor. Biotechnology in the Pulp and paper Industry. Advances in biochemical engineering biotechnology. Berlin: Springer Verlag; 1997. Chapter 2.

Leonowicz, A., A. Matuszewska, J. Luterek, D. Ziegenhagen, M. Wojtas-Wasilewska, N.-S. Cho, M. Hofrichter, and J. Rogalski. 1999. Biodegradation of lignin by white-rot fungi. Fungal Genet. Biol. 27: 175–185.


Leontievsky, A. A., T. Vares, P. Lankinen, J. K. Shergill, N. N. Pozdnyakova, N. M. Myasoedova, N. Kalkkinen, L. A. Golovleva, R. Cammack, C. F. Thurston, and A. Hatakka. 1997. Blue and yellow laccases of ligninolytic fungi. FEMS Microbiol. Lett. 156: 9-14.

Levin L., F. Forchiassin, and AM. Rams. 2002. Copper induction of lignin-modifying emzymes in the white-rot fungus Trametes trogii, Mycologia. 94: 377-383.

Liu W., Y. Chao, S. Liu, H. Bao, and S. Qian. 2003. Molecular cloning and characterization of a laccase gene from the basidiomycete Fome lignosus and expression in Pichia pastoris. Appl. Microbiol. Biotechnol. 63: 174-181.

Lobos SJ., J. Larraín, L. Salas, D. Cullen, and R. Vicuńa. 1994. Isoezymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporipsis subvermispora. Microbiology. 140: 2691-1698.

Luis F. L., L. Salas, F. Melo, R. Vicuňa, and D. Cullen. 2003. A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity. Appl. Environ. Microbiol. 69: 6257-6263.

Mario C.N.S., G. Francisco, M. A. Angélica, T. M. Angel, and J. M. María. 2002. Induction, isolation, and characterization of two laccases from the white rot basidiomycete Coriolopsis rigida. Appl. Environ. Microbiol. 68: 1534-1540.

Maximo C., and M. Costa-Ferreira. 2004. Decolourisation of reactive textile dyes by Irpex lacteus and lignin modifying enzymes. Proc. Biochem. 39: 1475–1479.

Morozova O. V., G. P. Shumakovich, M. A. Gorbacheva, S. V. Shleev, and A. I. Yaropolov. 2007. “Blue” Laccases. Biochemistry (Moscow). 72: 1396-1412.

Novotny C., K. Svobodova, A. Kasinath, and P. Erbanova. 2004. Biodegradation of synthetic dyes by Irpex lacteus under various growth conditions. Int. Biodeterior. Biodegrad. 54: 215–223.

Otterbein L, E. Record, S. Longhi, M. Asther, and S. Moukha. 2000. Molecular cloning of the cDNA encoding laccase from Pycnoporus cinabarinus 1-937 and expression in Pichia pastoris. Eur J Biochem. 267: 1619–1625.

Palonen H., M. Saloheimo, L. Viikari, and K. Kruus. 2003. Prification, characterization and sequence analysis of a laccase from the ascomycete Mauginiella sp.. Enzyme Microb. Technol. 33: 854-862.

Paszczynski, A., and R. L. Crawford. 1995. Potential for Bioremediation of Xenobiotic Compounds by the White-Rot Fungus Phanerochaete chrysosporium. Biotechnol. Prog. 11: 368-379.

Peláez, F., M. J. Martínez, and A. T. Martínez. 1995. Screening of 68 species of basidiomycetes for enzymes involved in lignin degradation. Mycol. Res. 99: 37-42.

Périé FH, and MH. Gold. 1991. Manganese regulateon of manganese peroxidease expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl. Environ. Microbiol. 57: 2240-2245.

Pickard MA., R. Rosa, T. Raunel, and VD. Rafael. 1999. Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl. Environ. Microbiol. 65: 3805-3809.

Reid I. D.. 1991. Biological pulping in paper manufacture. Trends Biotechnol. 9: 262–265.

Rigas F., V. Dritsa. 2006. Decolourisation of a polymeric dye by selected fungal strains in liquid cultures. Enzyme Microb. Technol. 39: 120-124.

Riu J., I. Schönsee, and D. Barcelo. 1998. Determination of sulfonated azo dyes in groundwater and Industrial effluents by automated solid-phase extraction followed by capillary electrophoresis/mass spectrometry. J Mass Spectrom. 33: 653-663.

Riva S. 2006. Laccases: blue enzymes for green chemistry. Trends Biotechnol. 24: 219-226.

Sakurai T., S. Suzuki. 1997. Spectroscopy of cucumber ascorbate oxidase and fungal laccase. In : Messerschmidt A ed. Multi-copper Oxidases. Singapore: World Sciencitific Press, 225-250.

Schultz, A., U. Jonas, E. Hammer, and F. Schauer. 2001. Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase. Appl. Environ. Microbiol. 67: 4377-4381.

Thurston, C. F. 1994. The structure and function of fungal laccases. Microbiology. 140:19-26.

Wesenberg, D., I. Kyriakides, and S. N. Agathos. 2003. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22: 161-187.

Whettena, R., and R. Sederoff. 1995. Lignin Biosynthesis. The Plant Cell. 7: 1001-1013.

White TJ., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (Eds.), PCR protocols pp. 315-320. Academic Press.

Wong P. K., and P. Y. Yuen. 1996. Decolorization and biodegradation of methyl red by Klebsiella pneumoniae RS-13. Water Res. 30: 1736–1744.

Yaropolov A. I., O. V. Skorobogatko, S. S. Vartanov, and S. D. Varfolomeyev. 1994. Laccase: properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol. 49: 257–80.

Yaver D. S., F. Xu, E. J. Golightly, K. M. Brown, S. H. Brown, M. W. Rey, P. Schneider, T. Halkier, K. Mondorf, and H. Dalbǿge. 1996. Purification, characterization, molecular cloning, and expression fo two laccase genes from the white rot basidiomycete Trametes villosa. Appl. Environ. Microbiol. 62: 834-841.

Yaver D. S., M. D. C. Overjero, F. Xu, B. A. Nelson, K. M. Brown, T. Halkier, S. Bernauer, S. H. Brown, and S. Kauppinen.1999. Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase lcc1. Appl Environ. Microbiol. 65: 4943-4948.

Yoshida H. 1883. Chemistry of Lacquer (Urushi) part 1. J. Chem. Soc. 43: 472-486.

Zhang M., F. Wu, Y. Xiao, and Weimin Gong. 2006. Characterization and decolorization ability of a laccase from Panus rudis. Enzyme Microb. Technol. 39: 92-97.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top