跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/05 02:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳寶蓮
研究生(外文):Bau-Lain Chen
論文名稱:應用薄膜型陰離子交換樹脂暨氣相層析質譜法分析尿中合成除蟲菊農藥生物指標方法之建立
論文名稱(外文):Method Development in the Determination of Metabolites of Pyrethroids in Urine by Strong Anion Exchange Disk Extraction /In-Vail Derivation and Gas Chromatography-Mass Spectrometry
指導教授:林維炤林維炤引用關係張火炎張火炎引用關係
指導教授(外文):Wei-Chao LinHo-Yuan Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境醫學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:72
中文關鍵詞:生物指標除蟲菊農藥強陰離子交換樹脂分析方法固相萃取
外文關鍵詞:analytical methodSAXbiomarkersPyrethroidssolid phase extraction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:2
合成除蟲菊農藥(Pyrethroids)經常使用於農、林、園藝業及一般環境衛生用藥,除蟲菊農藥具有神經毒性,當中毒發生時可能會導致癱瘓甚至死亡,已有相關研究報導指出除蟲菊農藥可能具有基因毒性。隨著合成除蟲菊農藥在一般家庭中使用量及頻率的增加,除蟲菊農藥在一般人口的暴露型態及內在暴露劑量可能較過去增加,如何對人體除蟲菊農藥暴露進行有效的檢測評估已成一重要之課題。過去除蟲菊農藥尿中代謝物分析方法,僅針對部分代謝物進行探討,並未能針對全面性除蟲菊農藥之暴露進行量測,且樣本前處理方式較為繁瑣費時。
本研究利用薄膜型強陰離子交換樹脂 (strong anion exchange, SAX)暨氣相層析質譜儀 (GC/MS)建立一省時且操作簡單並能同時偵測尿中五種除蟲菊農藥生物指標之分析方法。前處理方式為利用薄膜型強陰離子交換樹脂對尿中五種常見除蟲菊代謝物3-(2,2-dimethyl)-2,2-dimethyl-(1-cyclopropane)-carboxylic acid (簡稱ChCA)、3-(2,2-dichlorovinyl)-2,2-dimethyl-(1-cyclopropane)-carboxylic acid (簡稱Cl2CA)、3-(2,2-dibromorovinyl)-2,2-dimethyl-(1-cyclopropane)-carboxylic acid (簡稱Br2CA)、3-phenoxybenzoic acid (簡稱3PBA)及3-(4-hydroxy)-phenoxybenzoic acid (簡稱4OHPBA)進行萃取、過濾、濃縮於一步驟,吹氮後加入CH3I加熱進行線上衍生化,前處理完畢之樣本以氣相層析質譜儀進行分析。
本分析方法可將樣本前處理時間由4-24小時減少為2.5小時,儀器分析時間則由1小時縮短為17分鐘,較以往文獻分析方法大幅減少。大鼠灌食約3mg cypermethrin後尿液檢體測試時,發現加入30μL 10N NaOH(aq)能有效去除代謝酸conjugation,並可降低尿液基值干擾。各代謝酸的方法偵測下限介於0.32~5.52μg/L。以此方法分析除蟲菊農藥噴灑員工(n=22)及無職 業暴露除蟲菊農藥一般民眾(n=20)尿中除蟲菊代謝物含量,經統計分析兩組尿中除蟲菊代謝物含量差異達統計上顯著差異(P<0.05)。
本分析方法不但能有效區別職業性或非職業性暴露除蟲菊農藥其尿中代謝物含量,並且可大幅縮短樣本前處理時間及儀器分析時間,為一經濟、省時且操作簡單並能同時偵測尿中五種除蟲菊農藥代謝物之分析方法。相較於文獻上其他合成除蟲菊農藥之分析方法,本方法更適於例行性大量樣本分析應用,對人體各種除蟲菊農藥暴露進行較為廣泛的檢測評估。
關鍵字:除蟲菊農藥、生物指標、強陰離子交換樹脂、分析方法、固相萃取
Pyrethroids have been extensively used as insecticides in agriculture, forestry, horticulture, and residential hygiene. Pyrethroids have been documented as a neurotoxicant as well as a possible genotoxicant in literature. The exposure profile and total body burden of pyrethroids in population draw more and more attention due to their increasing use. The analytical methods developed in the past, however, only targeted on some metabolites instead of full-spectrum application for widely diversified pyrethroids. Moreover, the procedures in previous methods were considerably complicated and time-consuming.
The purpose of this study is to establish a more timesaving and simpler analytical method incorporating strong anion exchange (SAX) / in-vail derivatization with gas chromatography/mass spectrometry (GC/MS) in the determination of five urinary pyrethroid biomarkers at the same time. SAX was used in extraction, percolation and enrichment in a single step for the following five urinary pyrethroid metabolites: 3-(2,2-dimethyl)-2,2-dimethyl- (1-cyclopropane)-carboxylic acid (ChCA), cis/trans 3-(2,2-dichlorovinyl)-2,2-dimethyl- (1-cyclopropane)-carboxylic acid (cis/trans Cl2CA), 3-(2,2-dibromorovinyl)-2,2-dimethyl- (1-cyclopropane)-carboxylic acid (Br2CA), 3-phenoxybenzoic acid (3PBA), and 3-(4-hydroxy)-phenoxybenzoic acid (4OHPBA). After nitrogen blow, CH3I was added and in-vial derivatization was achieved following by heating prior to GC/MS determination.
We found the method developed in this study reduced the sample preparation time to 2.5 hrs from 4-24 hrs and the chromatographic course to 17 min from 1 hr. The addition of 30μL of NaOH (aq) at 10N to the urine collected from a SD rat after oral exposure to cypermethrin at 3mg was able to effectively improve the recovery rates of biomarkers of interest by possibly breaking down the conjugated forms into free forms as well as eliminate the chromatographic interference. The limits of detection for five pyrethroid metabolites were ranged from 0.32 to 5.52 μg/L. Statistical significance was found in the determination of five pyrethroid metabolites for the urine samples collected from pesticide sprayers (n=22) and from unexposed population (n=20).
This method not only can greatly simplify sample preparation procedure but also significantly reduce the consumption of toxic solvents in sample preparation as well as covering more diversified pyrethroids. This method could be more suitable in routine analysis and for screening purpose in the determination of pyrethroid exposure for general population as well as for occupationally exposed groups.
Key words: Pyrethroids, biomarkers, SAX, analytical method, solid phase extraction
摘 要.............................................................I
Abstract............................................................II
誌 謝...........................................................III
目 錄............................................................IV
表 目 錄............................................................VI
圖 目 錄...........................................................VII
第一章 緒 論.....................................................1
1-1 前言.............................................................1
1-2 研究背景.........................................................2
1-2.1 合成除蟲菊農藥之演化...........................................2
1-2.2 合成除蟲菊農藥之使用...........................................2
1-2.3 合成除蟲菊農藥毒性.............................................3
1-2.4 合成除蟲菊農藥之暴露評估.......................................4
1-2.5 合成除蟲菊農藥的生物偵測.......................................4
1-2.6 合成除蟲菊農藥尿中代謝物.......................................5
1-3 研究目的.........................................................6
第二章 文獻回顧...................................................7
2-1 尿中合成除蟲菊農藥代謝物分析方法.................................7
2-2 生物指標的選擇...................................................7
2-3 樣本萃取方式.....................................................8
2-3.1 溶劑萃取 (Liquid-liquid extraction)............................8
2-3.2 固相萃取 (Solid phase extraction, SPE).........................9
2-4 衍生化方式......................................................10
2-5 儀器分析方析....................................................10
第三章 材料與方法................................................12
3-1 實驗材料與設備..................................................12
3-1.1 藥品與材料....................................................12
3-1.2 儀器及設備....................................................12
3-2 實驗室測試分析..................................................14
3-2.1 初步實驗流程..................................................14
3-2.2 前處理與分析條件最佳化測試....................................14
3-2.3 實驗室QA/QC測試...............................................16
3-3 尿液樣本分析....................................................20
3-3.1 研究對象選取..................................................20
3-3.2 尿液檢體收取..................................................20
3-3.3 問卷調查......................................................20
3-3.4 檢體儲存、運送及處理..........................................21
第四章 結果與討論................................................22
4-1 實驗室測試結果..................................................22
4-1.1 實驗流程測試..................................................22
4-1.2 實驗室QA/QC測試...............................................25
4-2 職業與非職業除蟲菊農藥暴露族群之尿液樣本分析結果................27
第五章 結 論....................................................31
第六章 未來工作..................................................32
參考文獻............................................................33
附 錄 一............................................................67
徐爾烈,環境用藥有機磷殺蟲劑及殺菌劑使用安全評估,2001
白秀華,公共衛生學,2001
行政院農業委員會,農藥管理法規,2003
Angerer J. Butte W. Hoppe HW. Leng G. Lewalter H. Heinrich-Ramm R. Ritter A. Analyses of hazardous substances in biological materials. In: Angerer J. Shaller KH. Deutsche Forschungsgemeinschaft. Wiley-VCH Verlag, Weinheim. p. 239
Angerer J. Ritter A. Determination of metabolites of pyrethroids in human urine using solid-phase extraction and gas chromatography-mass spectrometry. Journal of Chromotography B. 695:217-226, 1997
Aprea C. Colosio C. Mammone T. Minoia C. Maroni M. Biological monitoring of pesticide exposure : a review of analytical methods. Journal of Chromatography B. 769:191-219, 2002
Aprea C. Stridori A. Sciarra G. Analytical method for the determination of urinary 3-phenoxybenzoic acid in subjects occupationally exposed to pyrethroid insecticides. Journal of Chromatography B. 695:227-236, 1997
Asakawa F. Jitsunari F. Miki K. Choi JO. Takeda N. Kitamado T. Suna S. Manabe Y. Agricultural worker exposure to and absorption of permethrin applied to cabbage. Bulletin of Environmental Contamination and Toxicology. 56:42-49, 1996
Change HY. Wu HC. Lin WC. Wu PL. Kuei CH. Determination of organophosphorus pesticide metabolites in surface water by use of a strong —exchange disk and in-vail derivatization. Chromatographia. 51(9):630-633, 2000
Chatfield SN. Croft MY. Dang T. Murby EJ. Yu GYF. Wells RJ. Simultaneous extraction and methylation of acidic analytes adsorbed onto ion exchange resins using supercritical acrbon dioxide containing methyl iodide. Analytical Chemistry. 67:945-951, 1995
Chauhan LKS. Agarwal DK. Sundararaman V. In vivo induction of sister chromatid exchange in mouse bone marrow following oral exposure to commercial formulations of alpha-cyano pyrethroids. Toxicology Letters. 93:153-157, 1997
Chen S. Zhang Z. He F. Yao P. Wu Y. Sun J. Liu L. Li Q. An epidemiological study on occupational acute pyrethroid poisoning in cotton farmers. British Journal of industrial Medicine. 48:77-81, 1991
Chester G. Hatfield LD. Hart TB. Leppert BC. Swaine H. Tummon OJ. Worker exposure to, and absorption of, cypermethrin during aerial application of an "ultra low volume" formulation to cotton. Archives of Environmental Contamination and Toxicology. 16(1):69-78, 1987
Chester G. Sabapathy NN. Woollen BH. Exposure and health assessment during application of lambda-cyhalothrin for malaria vector control in Pakistan. Bulletin of the World Health Organization. 70(5): 615-619, 1992
Clark JM. Matsumura F. Two different types of inhibitory effects of pyrethroids on nerve Ca and Ca-Mg-ATPase activity in the squid. Loligo pealei Pestic Biochem Physiol. 18:180-192, 1982
Columé A. Cádenas S. Gallego M. Valcárcel M. A solid phase extraction method for the screening and determination of pyrethroid metabolites and organochlorine pesticides in human urine. Rapid Communications in Mass Spectrometry. 15:2007-2013, 2001
Eadsforth CV. Baldwin MK. Human dose-extraction studies with the pyrethroid insecticides cypermethrin. Xenobiotica. 13:67-72, 1983
Eadsforth CV. Bragt PC. Sittert NJ. Human dose-extraction studies with cypermethrin and alpha-cypermethirn: relevance to biological monitoring. Xenobiotica. 18:603-614, 1988
Elliott M. Farnham AW. Janes NF. Needham PH. Pulman DA. Insecticidally active conformations of pyrethroids. In: Kohn GK. Mechanism of pesticide action. American Chemical Society, Washington, DC. pp. 80-91, 1974
Elliott M. Synthetic pyrethroids. In: Elliott M. Synthetic pyrethroid. American Chemical Society, Washington, DC. pp. 1-28, 1976
Field JA. Monohan K. Chlorinated acid herbicides in water by strong anion-exchande disk extraction and in-vial elution and derivatization. Journal of Chromatography A. 741:85-90, 1996
Hardt J. Angerer J. Biological monitoring of workers after the application of insecticidal pyrethroids. International Archives of Occupational and Environmental Health.
Hartley GS. West TF. Chemicals for pest control. Pergamon Press, Oxford. p. 26, 1969
He F. Sun J. Han K. Wu Y. Yao P. Wang S. Liu L. Effects of pyrethroid insecticides on subjects engaged in packaging pyrethroids. British Journal of Industrial Medicine. 45:548-551, 1988
Heudorf U. Angerer J. Metabolites of pyrethroid insecticides in urine speciments: current exposure in urban population in Germany. Environmental Health Perspectives. 109(3):213-217, 2001
Hibig V. Pfeil R. Schellshmidt B. ADI-werte und DTA —werte für pfanzenschutzmiittel-wirkatoffe. Bundesgesundheitsblatt. 4:182-184, 1994
Joy RM. Chlorinated hydrocarbon insecticides. In: Ecobichon DJ. Joy RM. Pesticides and neurological diseases. CRC Press, Boca Raton, Florida. pp. 91-150, 1982
Kolmodin-Hedman B. Swensson . Å. Åkerblom M. Occupational exposure to some synthetic pyrethroids (permethrin and fenvalerate). Archives of Toxicology. 50:27-33, 1982
Leng G. Kühn KH. Idel H. Biological monitoring of pyrethroid metabolites in urine of pest control operators. Toxicology Letter. 88:215-220, 1996
Leng G. Kühn KH. Idel H. Biological monitoring of pyrethroids in blood and pyrethroid metabolites in urine: applications and limitations. The Science of the Total Environment. 199:173-181, 1997
Leng G. Leng A. K Kühn KH. Lewalter J. Pauluhn J. Human dose-extraction studies with the pyrethorid insecticide cyfluthrin: urinary metabolite profile following inhalation. Xenobiotica. 27(12):1273-1283, 1997
Lin WC. Kuei CH. Wu HC. Yang CC. Chang HY. Method for the determination of dialky phosphates in urine by strong anion exchanfe disk extraction and in-vail derivatization. Journal of Analytical Toxicology. 26;176-180, 2002
Llewellyn DM. Brazier A. Brown R. Coker J. Evans ML. Hampton J. Nutley BP. White J. Occupational exposure to permethrin during its use as a public hygiene insecticide. Annals of Occupational Hygiene. 40(5):499-509, 1996
Lu FC. A review of the acceptable daily intakes of pesticides assessed by WHO. Regulatory Toxicology and Pharmacology. 21(3):352-364, 1995
Moretti M. Villarini M. Sforzolini GS. Pasquini R. Monarca S. Applicability of aspecific noninvasive methods for biomonitoring of occupational exposure to deltamethrin: preliminary study using an animal model. Archives of Environmental Contamimation and Toxicology. 33:323-328, 1997
Rhee HJ. Farquhar JA. Vermeulen NPE. Efficacy and transdermal absorption of permethrin in scabies patients. Acta Dermato Venereologia. 69:170-182, 1989
Schettgen T. Heudorf U. Drexler H. Angerer J. Pyrethroid exposure of the general population-is this due to diet. Toxicology Letters. 134:141-145, 2002
Shukla Y. Yadav A. Arora A. Carcinogenic and cocarcinogenic potantial of cypermethrin on mouse skin. Cancer Letters. 182:33-41, 2002
Soderlund DM. Clark JM. Sheets LP. Mullin LS. Piccirillo VJ. Sargent D. Stevens JT. Weiner ML. Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology. 171:3-59, 2002
Tuomainen A. Kangas J. Liesivuori J. Biological monitoring of deltamethrin exposure in greenhouses. International Archives of Occupational and Environmental Health. 69:62-64, 1996
Wang S. Zheng Q. Yu L. Xu B. Li Y. Health survey among farmers exposed to deltamethrin in the cotton fields. Ecotoxicology and Environmental Safty. 15:1-6, 1988
Wikes MF.Wollen BH. Marsh JR. Batten PL. Chester G. Biological monitoring for pesticide exposure -the role of human volunteer studies. International Archives of Occupational and Environmental Health. 64:s189-s192, 1993
Woollen BH. Marsh JR. Laird WJD. Lesser JE. The metanolism of cypermethrin in man: differences in urinary metabolite profiles following oral and dermal administration. Xenobiotica. 22:983-991, 1992
Yao PP. Li YW. Ding YZ. He F. Biological monitoring of deltamethrin in sprayers by HPLC method. Journal of Hygiene, Epidemiology, Microbiology & Immunology. 36(1):31-6, 1992
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top