|
(1) Harding, T. S. History of trehalose, its discovery and methods of preparation. Sugar 1923, 25, 476-478.
(2) Elbein, A. D.; Pan, Y. T.; Pastuszak, I.; Carroll, D. New insights on trehalose: a multifunctional molecule. Glycobiology 2003, 13, 17-27.
(3) Schiraldi, C.; Di Lernia, I.; De Rosa, M. Trehalose production: exploiting novel approaches. Trends Biotechnol. 2002, 20, 420-425.
(4) Behm, C. A. The role of trehalose in the physiology of nematodes. Int. J. Parasitol. 1997, 27, 215-229.
(5) Richards, A. B.; Krakowka, S.; Dexter, L. B.; Schmid, H.; Wolterbeek, A. P.; Waalkens-Berendsen, D. H.; Shigoyuki, A.; Kurimoto, M. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food. Chem. Toxicol. 2002, 40, 871-898.
(6) Paiva, C. L. A.; Panek, A. D. Biotechnological applications of the disaccharide trehalose. Biotechnol. Annu. Rev. 1996, 2, 293–314.
(7) Wautier, J. L.; Schmidt, A. M. Protein glycation: a firm link to endothelial cell dysfunction. Circ. Res. 2004, 95, 233-238.
(8) Arguelles, J. C. Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch. Microbiol. 2000, 174, 217-224.
(9) Becker, A.; Schloeder, P.; Steele, J. E.; Wegener, G. The regulation of trehalose metabolism in insects. Experientia 1996, 52, 433-439.
(10) Brennan, P. J.; Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem. 1995, 64, 29–63.
(11) Puech, V.; Chami, M.; Lemassu, A.; Laneelle, M. A.; Schiffler, B.; Gounon, P.; Bayan, N.; Benz, R.; Daffe, M. Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 2001, 147, 1365-1382.
(12) Eastmond, P. J.; Graham, I. A. Trehalose metabolism: a regulatory role for trehalose-6-phosphate? Curr. Opin. Plant Biol. 2003, 6, 231-235.
(13) Wingler, A.; Fritzius, T.; Wiemken, A.; Boller, T.; Aeschbacher, R. A. Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis. Plant Physiol. 2000, 124, 105-114.
(14) Gancedo, C.; Flores, C. L. The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res. 2004, 4, 351-359.
(15) Chen, Q.; Behar, K. L.; Xu, T.; Fan, C.; Haddad, G. G. Expression of Drosophila trehalose-phosphate synthase in HEK-293 cells increases hypoxia tolerance. J. Biol. Chem. 2003, 278, 49113-49118.
(16) Kandror, O.; DeLeon, A.; Goldberg, A. L. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 9727-9732.
(17) Purvis, J. E.; Yomano, L. P.; Ingram, L. O. Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl. Environ. Microbiol. 2005, 71, 3761-3769.
(18) Benaroudj, N.; Lee, D. H.; Goldberg, A. L. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 2001, 276, 24261-24267.
(19) Kempf, B.; Bremer, E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 1998, 170, 319-330.
(20) Herdeiro, R. S.; Pereira, M. D.; Panek, A. D.; Eleutherio, E. C. Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim. Biophys. Acta. 2006, 1760, 340-346.
(21) Welch, W. J.; Brown, C. R. Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones 1996, 1, 109–115.
(22) Singer, M. A.; Lindquist, S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell. 1998, 1, 639-648.
(23) Belton, P. S.; Gil, A. M. IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme. Biopolymers 1994, 34, 957–961.
(24) Kaushik, J. K.; Bhat, R. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J. Biol. Chem. 2003, 278, 26458-26465.
(25) Crowe, L. M.; Crowe, J. H. Trehalose and dry dipalmitoylphosphatidylcholine revisited. Biochim. Biophys. Acta. 1988, 946, 193-201.
(26) Womersley, C.; Uster, P. S.; Rudolph, A. S.; Crowe, J. H. Inhibition of dehydration-induced fusion between liposomal membranes by carbohydrates as measured by fluorescence energy transfer. Cryobiology 1986, 23, 245-255.
(27) Penna, S. Building stress tolerance through over-producing trehalose in transgenic plants. Trends Plant Sci. 2003, 8, 355-357.
(28) Garg, A. K.; Kim, J. K.; Owens, T. G.; Ranwala, A. P.; Choi, Y. D.; Kochian, L. V.; Wu, R. J. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5898-15903.
(29) Tanaka, M.; Machida, Y.; Niu, S.; Ikeda, T.; Jana, N. R.; Doi, H.; Kurosawa, M.; Nekooki, M.; Nukina, N. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat. Med. 2004, 10, 148-154.
(30) Davies, J. E.; Sarkar, S.; Rubinsztein, D. C. Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharyngeal muscular dystrophy. Hum. Mol. Genet. 2006, 15, 23-31.
(31) Ahn, T.; Yun, C. H. Trehalose increases chemical-induced transformation efficiency of Escherichia coli. Anal. Biochem. 2004, 333, 199-200.
(32) Carninci, P.; Nishiyama, Y.; Westover, A.; Itoh, M.; Nagaoka, S.; Sasaki, N.; Okazaki, Y.; Muramatsu, M.; Hayashizaki, Y. Thermostabilization and thermoactivation of thermolabile enzymes by trehalose and its application for the synthesis of full length cDNA. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 520-524.
(33) Kolosova, A. Y.; Shim, W. B.; Yang, Z. Y.; Eremin, S. A. Chung D. H. Direct competitive ELISA based on a monoclonal antibody for detection of aflatoxin B1. Stabilization of ELISA kit components and application to grain samples. Anal. Bioanal. Chem. 2006, 384, 286-294.
(34) Wang, M.; Xu, Z.; Tu, P.; Yu, X.; Xiao, S.; Yang, M. α,α-Trehalose derivatives bearing guanidino groups as inhibitors to HIV-1 Tat-TAR RNA interaction in human cells. Bioorg. Med. Chem. Lett. 2004, 14, 2585-2588.
(35) Cabib, E.; Leloir, L. F.; The biosynthesis of trehalose phosphate. J. Biol. Chem. 1958, 231, 259-275.
(36) Maruta, K.; Nakada, T.; Kubota, M.; Chaen, H.; Sugimoto, T.; Kurimoto, M.; Tsujisaka, Y. Formation of trehalose from maltooligosaccharides by a novel enzymatic system. Biosci. Biotechnol. Biochem. 1995, 59, 1829-1834.
(37) Nakada, T.; Maruta, K.; Tsusaki, K.; Kubota, M.; Chaen, H.; Sugimoto, T.; Kurimoto, M.; Tsujisaka, Y. Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36. Biosci. Biotechnol. Biochem. 1995, 59, 2210-2214.
(38) Nakada, T.; Maruta, K.; Mitsuzumi, H.; Kubota, M.; Chaen, H.; Sugimoto, T.; Kurimoto, M.; Tsujisaka, Y.; Purification and characterization of a novel enzyme, maltooligosyl trehalose trehalohydrolase, from Arthrobacter sp. Q36. Biosci. Biotechnol. Biochem. 1995, 59, 2215-2218.
(39) Nishimoto, T.; Nakano, M.; Ikegami, S.; Chaen, H.; Fukuda, S.; Sugimoto, T.; Kurimoto, M.; Tsujisaka, Y. Existence of a novel enzyme converting maltose into trehalose. Biosci. Biotechnol. Biochem. 1995, 59, 2189-2190.
(40) Wannet, W. J.; Op den Camp, H. J.; Wisselink, H. W.; van der Drift, C.; Van Griensven, L. J.; Vogels, G. D. Purification and characterization of trehalose phosphorylase from the commercial mushroom Agaricus bisporus. Biochim. Biophys. Acta. 1998, 1425, 177-188.
(41) Singer, M. A.; Lindquist, S. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends. Biotechnol. 1998, 16, 460-468.
(42) Jang, I. C.; Oh, S. J.; Seo, J. S.; Choi, W. B.; Song, S. I.; Kim, C. H.; Kim, Y. S.; Seo, H. S.; Choi, Y. D.; Nahm, B. H.; Kim, J. K. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant. Physiol. 2003, 131, 516-524.
(43) MacGregor, E. A.; Janecek, S.; Svensson, B. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim. Biophys. Acta. 2001, 1546,1-20.
(44) Nishimoto, T.; Nakano, M.; Nakada, T.; Chaen, H.; Fukuda, S.; Sugimoto, T.; Kurimoto, M.; Tsujisaka, Y. Purification and properties of a novel enzyme, trehalose sythase, from Pimelobacter sp. R48. Biosci. Biotechnol. Biochem. 1996, 60, 640-644.
(45) Nishimoto, T.; Nakada, T.; Chaen, H.; Fukuda, S.; Sugimoto, T.; Kurimoto, M.; Tsujisaka, Y. Purification and charaterization of a thermostable trehalose synthase from Thermus aquaticus. Biosci. Biotechnol. Biochem. 1996, 60, 835-839.
(46) Koh, S.; Shin, H. J.; Kim, J. S.; Lee, D. S.; Lee, S. Y. Trehalose synthesis from maltose by a thermostable trehalose synthase from Thermus caldophilus. Biotechnology Letters 1998, 20, 757-761.
(47) Pan, Y. T.; Edavana, V. K.; Jourdian, W. J.; Edmondson, R.; Carroll, J. D.; Pastuszak, I.; Elbein, A. D. Trehalose synthase of Mycobacterium smegmatis: purification, cloning, expression and properties of the enzyme. Eur. J. Biochem. 2004, 271, 4259-4269.
(48) Wei, Y. T.; Zhu, Q. X.; Luo, Z. F.; Lu, F. S.; Chen, F. Z.; Wang, Q. Y.; Huang, K.; Meng, J. Z.; Wang, R.; Huang, R. B. Cloning, expression and identification of a new trehalose synthase gene from Thermobifida fusca genome. Acta Biochim. Biophys. Sin. 2004, 36, 477-484.
(49) Lee, J. H.; Lee, K. H.; Kim, C. G.; Lee, S. Y.; Kim, G. J.; Park, Y. H.; Chung, S. O. Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose. Appl. Microbiol. Biotechnol. 2005, 68, 213-219.
(50) Schleper, C.; Puehler, G.; Holz, I.; Gambacorta, A.; Janekovic, D.; Santarius, U.; Klenk, H. P.; Zillig, W. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J. Bacteriol. 1995, 177, 7050-7059.
(51) Futterer, O.; Angelov, A.; Liesegang, H.; Gottschalk, G.; Schleper, C.; Schepers, B.; Dock, C.; Antranikian, G.; Liebl, W. Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9091-9096.
(52) Bates, R. B.; Byrne, D. N.; Kane, V. V.; Miller, W. B.; Taylor, S. R. N.m.r. characterization of trehalulose from the excrement of the sweet potato withefly, Bemisia tabaci. Carbohydr. Res. 1990, 201, 342-345.
(53) Thompson, J.; Robrish, S. A.; Pikis, A.; Brust, A.; Lichtenthaler, F. W. Phosphorylation and metabolism of sucrose and its five linkage-isomeric alpha-D-glucosyl-D-fructoses by Klebsiella pneumoniae. Carbohydr. Res. 2001, 331, 149-161.Kuriki, T.; Imanaka, T. The concept of the alpha-amylase family: structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 1999, 87, 557-565.
(54) Watanabe, K.; Miyake, K.; Suzuki, Y. Identification of catalytic and substrate-binding site residues in Bacillus cereus ATCC7064 oligo-1,6-glucosidase. Biosci. Biotechnol. Biochem. 2001, 65, 2058-2064.
(55) Zhang, D.; Li, N.; Lok, S. M.; Zhang, L. H.; Swaminathan, K. Isomaltulose synthase (PalI) of Klebsiella sp. LX3. Crystal structure and implication of mechanism. J. Biol. Chem. 2003, 278, 35428-35434.
(56) Dworschak, E. Nonenzyme browning and its effect on protein nutrition. Crit. Rev. Food. Sci. Nutr. 1980, 13, 1-40.
(57) Fennema, O. R. Carbohydrates. In Food Chemistry, 2nd ed.; Marcel Dekker, Inc. : New York, 1985; pp 96-105.
(58) Kuriki, T.; Imanaka, T. The concept of the alpha-amylase family: structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 1999, 87, 557-565.
(59) Koh, S.; Kim, J.; Shin, H. J.; Lee, D.; Bae, J.; Kim, D.; Lee, D. S. Mechanistic study of the intramolecular conversion of maltose to trehalose by Thermus caldophilus GK24 trehalose synthase. Carbohydr. Res. 2003, 338, 1339-1343.
(60) Uitdehaag, J. C.; Mosi, R.; Kalk, K. H.; van der Veen, B. A.; Dijkhuizen, L.; Withers, S. G.; Dijkstra, B. W. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nat Struct. Biol. 1999, 6, 432-436.
(61) Brayer, G. D.; Sidhu, G.; Maurus, R.; Rydberg, E. H.; Braun, C.; Wang, Y.; Nguyen, N. T.; Overall, C. M.; Withers, S. G. Subsite mapping of the human pancreatic alpha-amylase active site through structural, kinetic, and mutagenesis techniques. Biochemistry 2000, 39, 4778-4791.
(62) Timmins, J.; Leiros, H. K.; Leonard, G.; Leiros, I.; McSweeney, S. Crystal structure of maltooligosyltrehalose trehalohydrolase from Deinococcus radiodurans in complex with disaccharides. J. Mol. Biol. 2005, 347, 949-963.
(63) Jensen, M. H.; Mirza, O.; Albenne, C.; Remaud-Simeon, M.; Monsan, P.; Gajhede, M.; Skov, L. K. Crystal structure of the covalent intermediate of amylosucrase from Neisseria polysaccharea. Biochemistry 2004, 43, 3104-3110.
(64) Shaw, J. F.; Sheu, J. R. Production of high-maltose syrup and high-protein flour from rice by an enzymatic method. Biosci. Biotechnol. Biochem. 1992, 56, 1071-1073.
(65) Shaw, J. F. Production of high-maltose syrup and high-protein byproduct from materials that contain starch and protein by enzymatic process. 1994, US patent 5312739.
|