跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/14 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳怡珊
研究生(外文):Yi-Shan Chen
論文名稱:Picrophilustorridus海藻糖合成酶基因在大腸桿菌之選殖、表現及其重組蛋白質之生化特性分析
論文名稱(外文):Gene Cloning, Expression and Biochemical Characterization of a Recombinant Trehalose Synthase from Picrophilus torridus in Escherichia coli
指導教授:蕭介夫蕭介夫引用關係
指導教授(外文):Jei-Fu Shaw
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:84
中文關鍵詞:高效能液相層析法麥芽糖Picrophilus torridus海藻糖海藻糖合成酶
外文關鍵詞:high performance liquid chromatographymaltosePicrophilus torridustrehalosetrehalose synthase
相關次數:
  • 被引用被引用:5
  • 點閱點閱:441
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:0
海藻糖(Trehalose) 是新一代崛起的多功能醣類,存在於自然界的許多物種內,其在生物體內的功用除了可作為儲備能源與碳源外,還能幫助生物抵抗惡劣環境。海藻糖的應用範圍很廣,除了當作甜味劑外,因其具有穩定生物巨分子的能力,所以也可用來幫助保存食品、化妝品或是醫藥材料。海藻糖合成酶是生物體內用來生成海藻糖的一種途徑,能直接將麥芽糖轉化成海藻糖;本研究之新型海藻糖合成酶是從一株極度耐酸、適中溫的古生菌Picrophilus torridus基因組序列中找到,利用overlap extension PCR方式合成並在大腸桿菌中大量表達之基因重組酵素,尾端接有六個組胺酸 (Histidine)幫助純化。此酵素最適作用溫度與pH值分別是45 °C與pH 6.0,但到60 °C 與pH 5.0時仍具有極高的活性與穩定性,比目前已發表的海藻糖合成酶具有較廣的pH耐受度。在熱安定性方面,此酵素的熱變性反應屬於一級反應,在60 °C的情況下半衰期約為16小時。另外,此酵素對於麥芽糖的催化效率(kcat/KM)是對海藻糖的2.5倍,顯示其傾向於以麥芽糖當受質,催化產生海藻糖;而此酵素所催化的最大轉化率具有不受受質濃度影響,且與溫度成反比的特性,在pH 6.0, 20 °C的情況下可達到71 %的最大轉化率。在1 mM 濃度的Ag+, Hg2+, Al3+ 或SDS存在的情況之下酵素的活性會被完全抑制。此外,若與其他同屬α-澱粉酶家族(α-amylase family)的酵素做序列比對,可發現此海藻糖合成酶與其他α-澱粉酶家族的酵素都有三個保留的羧酸型胺基酸(carboxylic acid amino acids) (Asp203, Glu245 與Asp311)與兩個保留的組胺酸(His106 與 His310),由定位點突變的結果可發現這五個胺基酸對此酵素活性有極大的影響,推測此海藻糖合成酶可能利用與其他α-澱粉酶家族酵素類似的機制進行反應。本研究發現之新型海藻糖合成酶因同時具有耐熱與耐酸的能力,相信其在未來工業生產方面將具有極大的潛力。
Trehalose is a newly emerging multi-functional disaccharide. It serves a variety of functions in organisms and protects organisms to survive harsh environments. In addition to be a sweetener, the ability of trehalose to stabilize macromolecules makes it a useful compound to preserve biomaterials in the food, cosmetic, and pharmaceutical industries. Trehalose synthase (TSase) is one of the pathways employed by organisms to synthesize trehalose. It catalyzes the reversible conversion of maltose into trehalose by intramolecular transglucosylation. In the present work, a new TSase gene identified from a hyperacidophilic, thermophilic archaea, Picrophilus torridus, was synthesized using overlap extension PCR and expressed in Escherichia coli. The recombinant P. torridus TSase (PTTS) with a C-terminal (His)6-tag was then purified by Ni-column to an electrophoretically homogeneous state. Activity analyses, using maltose as substrate, showed an optimum pH and temperature of 6.0 and 45 °C, respectively. However, the recombinant PTTS still maintained high activity up to pH 5.0 and 60 °C. A 2.5-fold higher catalytic efficiency (kcat/KM) for maltose than trehalose was shown in the kinetics analysis, indicating maltose as the preferred substrate for PTTS. The thermal inactivation of the recombinant PTTS showed the first order kinetics. The half-life time of the recombinant PTTS at 60 °C was about 16 h. The maximum conversion rate of maltose into trehalose by the enzyme tended to increase at lower temperatures, and reached about 71% at 20 °C. The activity of the enzyme was inhibited by Ag+, Hg2+, Al3+, and SDS. In addition, three active sites (Asp203, Glu245, Asp311) and two substrate-binding sites (His106 and His310) were deduced from the sequence alignment and confirmed by site-directed mutagenesis. As these residues are all conserved in other α-amylase family enzymes and have been found to be involved in catalysis, trehalose synthase might use a similar hydrolysis mechanism as other α-amylase family enzymes to cleave the α-1,4-bond of maltose. Since this newly found TSase is thermostable and more acid-resistant than any others reported, it is potentially useful for industrial applications.
Abbreviations..…………………………………………………………………... Ⅰ
Abstract (in Chinese) ....………………………………………………………… Ⅲ
Abstract..………………………………………………………………………… Ⅳ
Introduction.…………………………………………………………………..... 1
Distribution of trehalose.………………………………………………..…. 1
Physical and chemical properties of trehalose.…………………………..… 1
Functions of trehalose.…………………………………………………..…. 2
Applications of trehalose.…………………..………………………….…... 4
Trehalose biosynthesis.……………………………………………….……. 5
Turnover or hydrolysis of trehalose ….……………………………….…… 6
Manufacture of trehalose.…………………………………………….……. 7
Trehalose synthase ……………………………………………………..….. 8
Picrophilus torridus ………………………………………………….……. 8
Thesis aim………………………………………………………………….…… 9
Materials and Methods. ……………………………………………………..… 10
Materials …………………………………………………………………... 10
Bacterial strains and plasmid ..…………………………………………….. 10
Synthesis of trehalose synthase gene ……………………………………… 10
DNA gel extraction ……………………………………………………….. 11
Preparation of competent cells …………………………………………….. 12
Transformation ………………………………………………………….…. 12
Isolation of plasmid DNA …………………………………………………. 13
Construction of wild-type PTTS gene …………………………………….. 14
Purification of the recombinant PTTS ………………………………….…. 14
Purification of the wild-type PTTS ………………………..…………….… 15
Protein assay …………………………………………………………….… 16
Preparation of the purification table …………………………………….… 16
Enzyme assay …………………………………………………………….... 17
Kinetic parameters analysis …………………………………………….…. 18
Thermostability ………………………………………………………….… 18
Carbohydrates analysis …………..………………………………………... 20
NMR spectroscopy ..………………………………………………………. 20
Construction of PTTS mutants ……………………………………………. 21
Results ……………………………………………………………………….…. 22
Expression of the recombinant PTTS ………...…………………………… 22
Purification of the recombinant PTTS …………………………………….. 22
Biochemical properties of the recombinant PTTS ………………………… 22
Effects of pH and temperature on the activity and stability
of the recombinant PTTS ……………………………………..……… 22
Kinetics analysis ………………………………………………….….. 23
Thermostability ………………………………………………………. 24
Effects of metal ions and reagents on PTTS activity ………………… 24
Substrate specificity of the recombinant PTTS ……………………… 25
Effects of substrate concentration and temperature on the
maximum yield of trehalose ……………………………………...……...... 25
Purification of the Wild-Type PTTS …………………………………….… 26
Sequence alignment and site-directed mutagenesis analysis ……………… 26
Discussion …..……………………………………………………………….…. 28
References ….....……………………………………………………………….. 34
Tables and Figures ……….………………………………………………….… 41
Table 1. Comparison between six reported TSases …….………….…….. 41
Table 2. Summary of the purification procedures of the recombinant
PTTS from E. coli. …….……………………………………….. 42
Table 3. Kinetic parameters of PTTS ..……………….………………….. 43
Table 4. Thermodynamic parameters for the inactivation of the
recombinant PTTS at different temperatures .………………….. 44
Table 5. Effects of metal Ions and reagents on the activity of PTTS .….... 45
Table 6. Summary of the purification procedures of the wild-type
PTTS from E. coli. ……………………………………………… 46
Table 7. Specific activity of Wild-type PTTS and its mutant enzymes ….. 47
Figure 1. Three biosynthetic pathways of trehalose .…………………..…. 48
Figure 2. The result of carbohydrate analysis by high performance
liquid chromatography ……….…………………………….…… 49
Figure 3. 12% SDS-PAGE analysis for the purification of
the recombinant PTTS .…………………………………………. 50
Figure 4. Effects of pH on the activity and stability of PTTS ….…………. 51
Figure 5. Effects of temperature on the activity and stability of PTTS ..…. 52
Figure 6. Kinetics of thermoinactivation for the recombinant PTTS
at 60˚C, 65˚C, 70˚C, 75˚C, 80˚C, respectively ……………..……. 53
Figure 7. Arrhenius plot for thermal inactivation of the recombinant PTTS.54
Figure 8. The 2D HSQC NMR analysis result of the unknown product
converted from sucrose by PTTS ……………………….………. 55
Figure 9. Effects of substrate concentration on the maximum yield of
trehalose by PTTS ………………………………………………. 57
Figure 10. Effects of temperature on the maximum yield of trehalose
by PTTS. ……………………………………………………..…. 58
Figure 11. 12% SDS-PAGE analysis for the purification of
wild-type PTTS ……………………………………………...…. 59
Figure 12. Amino acids sequence alignment result .……………………….. 60
Figure 13. 12% SDS-PAGE analysis of the purified recombinant PTTS
and its mutant proteins ..………………………………………… 61
Figure 14. Possible catalysis mechanism of PTTS on maltose .………..…... 62
Appendix
Appendix 1. Construction of PTTS ………………………………………….. 63
Appendix 1-1. Designing of 36 oligonucleotides ……………….…… 63
Appendix 1-2. Overlap Extension PCR……………………………… 66
Appendix 1-3. Scheme for the Plasmid Construction ……..………… 67
Appendix 1-4. DNA sequence of the synthesized PTTS gene ………. 68 Appendix 1-5. The Amino Acid Sequence of the Recombinant PTTS. 69
Appendix 2. Vector Map ……………………………………………………… 70
Appendix 3. E. coli Strain Information ………………………………………. 71
Appendix 4. Carbohydrate Structure …………………………………………. 72
Appendix 5. Media & Reagents……………………………………………….. 73
(1) Harding, T. S. History of trehalose, its discovery and methods of preparation. Sugar 1923, 25, 476-478.

(2) Elbein, A. D.; Pan, Y. T.; Pastuszak, I.; Carroll, D. New insights on trehalose: a multifunctional molecule. Glycobiology 2003, 13, 17-27.

(3) Schiraldi, C.; Di Lernia, I.; De Rosa, M. Trehalose production: exploiting novel approaches. Trends Biotechnol. 2002, 20, 420-425.

(4) Behm, C. A. The role of trehalose in the physiology of nematodes. Int. J. Parasitol. 1997, 27, 215-229.

(5) Richards, A. B.; Krakowka, S.; Dexter, L. B.; Schmid, H.; Wolterbeek, A. P.; Waalkens-Berendsen, D. H.; Shigoyuki, A.; Kurimoto, M. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food. Chem. Toxicol. 2002, 40, 871-898.

(6) Paiva, C. L. A.; Panek, A. D. Biotechnological applications of the disaccharide trehalose. Biotechnol. Annu. Rev. 1996, 2, 293–314.

(7) Wautier, J. L.; Schmidt, A. M. Protein glycation: a firm link to endothelial cell dysfunction. Circ. Res. 2004, 95, 233-238.

(8) Arguelles, J. C. Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch. Microbiol. 2000, 174, 217-224.

(9) Becker, A.; Schloeder, P.; Steele, J. E.; Wegener, G. The regulation of trehalose metabolism in insects. Experientia 1996, 52, 433-439.

(10) Brennan, P. J.; Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem. 1995, 64, 29–63.

(11) Puech, V.; Chami, M.; Lemassu, A.; Laneelle, M. A.; Schiffler, B.; Gounon, P.;
Bayan, N.; Benz, R.; Daffe, M. Structure of the cell envelope of corynebacteria:
importance of the non-covalently bound lipids in the formation of the cell wall
permeability barrier and fracture plane. Microbiology 2001, 147, 1365-1382.

(12) Eastmond, P. J.; Graham, I. A. Trehalose metabolism: a regulatory role for
trehalose-6-phosphate? Curr. Opin. Plant Biol. 2003, 6, 231-235.

(13) Wingler, A.; Fritzius, T.; Wiemken, A.; Boller, T.; Aeschbacher, R. A. Trehalose
induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in
Arabidopsis. Plant Physiol. 2000, 124, 105-114.

(14) Gancedo, C.; Flores, C. L. The importance of a functional trehalose biosynthetic
pathway for the life of yeasts and fungi. FEMS Yeast Res. 2004, 4, 351-359.

(15) Chen, Q.; Behar, K. L.; Xu, T.; Fan, C.; Haddad, G. G. Expression of Drosophila
trehalose-phosphate synthase in HEK-293 cells increases hypoxia tolerance. J.
Biol. Chem. 2003, 278, 49113-49118.

(16) Kandror, O.; DeLeon, A.; Goldberg, A. L. Trehalose synthesis is induced upon
exposure of Escherichia coli to cold and is essential for viability at low
temperatures. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 9727-9732.

(17) Purvis, J. E.; Yomano, L. P.; Ingram, L. O. Enhanced trehalose production
improves growth of Escherichia coli under osmotic stress. Appl. Environ.
Microbiol. 2005, 71, 3761-3769.

(18) Benaroudj, N.; Lee, D. H.; Goldberg, A. L. Trehalose accumulation during
cellular stress protects cells and cellular proteins from damage by oxygen
radicals. J. Biol. Chem. 2001, 276, 24261-24267.

(19) Kempf, B.; Bremer, E. Uptake and synthesis of compatible solutes as microbial
stress responses to high-osmolality environments. Arch. Microbiol. 1998, 170,
319-330.

(20) Herdeiro, R. S.; Pereira, M. D.; Panek, A. D.; Eleutherio, E. C. Trehalose
protects Saccharomyces cerevisiae from lipid peroxidation during oxidative
stress. Biochim. Biophys. Acta. 2006, 1760, 340-346.

(21) Welch, W. J.; Brown, C. R. Influence of molecular and chemical chaperones on
protein folding. Cell Stress Chaperones 1996, 1, 109–115.

(22) Singer, M. A.; Lindquist, S. Multiple effects of trehalose on protein folding in
vitro and in vivo. Mol. Cell. 1998, 1, 639-648.

(23) Belton, P. S.; Gil, A. M. IR and Raman spectroscopic studies of the interaction
of trehalose with hen egg white lysozyme. Biopolymers 1994, 34, 957–961.

(24) Kaushik, J. K.; Bhat, R. Why is trehalose an exceptional protein stabilizer? An
analysis of the thermal stability of proteins in the presence of the compatible
osmolyte trehalose. J. Biol. Chem. 2003, 278, 26458-26465.

(25) Crowe, L. M.; Crowe, J. H. Trehalose and dry dipalmitoylphosphatidylcholine
revisited. Biochim. Biophys. Acta. 1988, 946, 193-201.

(26) Womersley, C.; Uster, P. S.; Rudolph, A. S.; Crowe, J. H. Inhibition of
dehydration-induced fusion between liposomal membranes by carbohydrates as
measured by fluorescence energy transfer. Cryobiology 1986, 23, 245-255.

(27) Penna, S. Building stress tolerance through over-producing trehalose in
transgenic plants. Trends Plant Sci. 2003, 8, 355-357.

(28) Garg, A. K.; Kim, J. K.; Owens, T. G.; Ranwala, A. P.; Choi, Y. D.; Kochian, L.
V.; Wu, R. J. Trehalose accumulation in rice plants confers high tolerance levels
to different abiotic stresses. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5898-15903.

(29) Tanaka, M.; Machida, Y.; Niu, S.; Ikeda, T.; Jana, N. R.; Doi, H.; Kurosawa, M.;
Nekooki, M.; Nukina, N. Trehalose alleviates polyglutamine-mediated
pathology in a mouse model of Huntington disease. Nat. Med. 2004, 10,
148-154.

(30) Davies, J. E.; Sarkar, S.; Rubinsztein, D. C. Trehalose reduces aggregate
formation and delays pathology in a transgenic mouse model of
oculopharyngeal muscular dystrophy. Hum. Mol. Genet. 2006, 15, 23-31.

(31) Ahn, T.; Yun, C. H. Trehalose increases chemical-induced transformation
efficiency of Escherichia coli. Anal. Biochem. 2004, 333, 199-200.

(32) Carninci, P.; Nishiyama, Y.; Westover, A.; Itoh, M.; Nagaoka, S.; Sasaki, N.;
Okazaki, Y.; Muramatsu, M.; Hayashizaki, Y. Thermostabilization and
thermoactivation of thermolabile enzymes by trehalose and its application for the
synthesis of full length cDNA. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 520-524.

(33) Kolosova, A. Y.; Shim, W. B.; Yang, Z. Y.; Eremin, S. A. Chung D. H. Direct
competitive ELISA based on a monoclonal antibody for detection of aflatoxin
B1. Stabilization of ELISA kit components and application to grain samples.
Anal. Bioanal. Chem. 2006, 384, 286-294.

(34) Wang, M.; Xu, Z.; Tu, P.; Yu, X.; Xiao, S.; Yang, M. α,α-Trehalose
derivatives bearing guanidino groups as inhibitors to HIV-1 Tat-TAR RNA
interaction in human cells. Bioorg. Med. Chem. Lett. 2004, 14, 2585-2588.

(35) Cabib, E.; Leloir, L. F.; The biosynthesis of trehalose phosphate. J. Biol. Chem.
1958, 231, 259-275.

(36) Maruta, K.; Nakada, T.; Kubota, M.; Chaen, H.; Sugimoto, T.; Kurimoto, M.;
Tsujisaka, Y. Formation of trehalose from maltooligosaccharides by a novel
enzymatic system. Biosci. Biotechnol. Biochem. 1995, 59, 1829-1834.

(37) Nakada, T.; Maruta, K.; Tsusaki, K.; Kubota, M.; Chaen, H.; Sugimoto, T.;
Kurimoto, M.; Tsujisaka, Y. Purification and properties of a novel enzyme,
maltooligosyl trehalose synthase, from Arthrobacter sp. Q36. Biosci. Biotechnol.
Biochem. 1995, 59, 2210-2214.

(38) Nakada, T.; Maruta, K.; Mitsuzumi, H.; Kubota, M.; Chaen, H.; Sugimoto, T.;
Kurimoto, M.; Tsujisaka, Y.; Purification and characterization of a novel
enzyme, maltooligosyl trehalose trehalohydrolase, from Arthrobacter sp. Q36.
Biosci. Biotechnol. Biochem. 1995, 59, 2215-2218.

(39) Nishimoto, T.; Nakano, M.; Ikegami, S.; Chaen, H.; Fukuda, S.; Sugimoto, T.;
Kurimoto, M.; Tsujisaka, Y. Existence of a novel enzyme converting maltose
into trehalose. Biosci. Biotechnol. Biochem. 1995, 59, 2189-2190.

(40) Wannet, W. J.; Op den Camp, H. J.; Wisselink, H. W.; van der Drift, C.; Van
Griensven, L. J.; Vogels, G. D. Purification and characterization of trehalose
phosphorylase from the commercial mushroom Agaricus bisporus. Biochim.
Biophys. Acta. 1998, 1425, 177-188.

(41) Singer, M. A.; Lindquist, S. Thermotolerance in Saccharomyces cerevisiae: the
Yin and Yang of trehalose. Trends. Biotechnol. 1998, 16, 460-468.

(42) Jang, I. C.; Oh, S. J.; Seo, J. S.; Choi, W. B.; Song, S. I.; Kim, C. H.; Kim, Y. S.;
Seo, H. S.; Choi, Y. D.; Nahm, B. H.; Kim, J. K. Expression of a bifunctional
fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and
trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose
accumulation and abiotic stress tolerance without stunting growth. Plant. Physiol. 2003, 131, 516-524.

(43) MacGregor, E. A.; Janecek, S.; Svensson, B. Relationship of sequence and
structure to specificity in the alpha-amylase family of enzymes. Biochim.
Biophys. Acta. 2001, 1546,1-20.

(44) Nishimoto, T.; Nakano, M.; Nakada, T.; Chaen, H.; Fukuda, S.; Sugimoto, T.;
Kurimoto, M.; Tsujisaka, Y. Purification and properties of a novel enzyme,
trehalose sythase, from Pimelobacter sp. R48. Biosci. Biotechnol. Biochem.
1996, 60, 640-644.

(45) Nishimoto, T.; Nakada, T.; Chaen, H.; Fukuda, S.; Sugimoto, T.; Kurimoto, M.;
Tsujisaka, Y. Purification and charaterization of a thermostable trehalose
synthase from Thermus aquaticus. Biosci. Biotechnol. Biochem. 1996, 60,
835-839.

(46) Koh, S.; Shin, H. J.; Kim, J. S.; Lee, D. S.; Lee, S. Y. Trehalose synthesis from
maltose by a thermostable trehalose synthase from Thermus caldophilus. Biotechnology Letters 1998, 20, 757-761.

(47) Pan, Y. T.; Edavana, V. K.; Jourdian, W. J.; Edmondson, R.; Carroll, J. D.;
Pastuszak, I.; Elbein, A. D. Trehalose synthase of Mycobacterium smegmatis:
purification, cloning, expression and properties of the enzyme. Eur. J. Biochem.
2004, 271, 4259-4269.

(48) Wei, Y. T.; Zhu, Q. X.; Luo, Z. F.; Lu, F. S.; Chen, F. Z.; Wang, Q. Y.; Huang, K.;
Meng, J. Z.; Wang, R.; Huang, R. B. Cloning, expression and identification of a
new trehalose synthase gene from Thermobifida fusca genome. Acta Biochim.
Biophys. Sin. 2004, 36, 477-484.

(49) Lee, J. H.; Lee, K. H.; Kim, C. G.; Lee, S. Y.; Kim, G. J.; Park, Y. H.; Chung, S.
O. Cloning and expression of a trehalose synthase from Pseudomonas stutzeri
CJ38 in Escherichia coli for the production of trehalose. Appl. Microbiol.
Biotechnol. 2005, 68, 213-219.

(50) Schleper, C.; Puehler, G.; Holz, I.; Gambacorta, A.; Janekovic, D.; Santarius, U.;
Klenk, H. P.; Zillig, W. Picrophilus gen. nov., fam. nov.: a novel aerobic,
heterotrophic, thermoacidophilic genus and family comprising archaea capable
of growth around pH 0. J. Bacteriol. 1995, 177, 7050-7059.

(51) Futterer, O.; Angelov, A.; Liesegang, H.; Gottschalk, G.; Schleper, C.; Schepers,
B.; Dock, C.; Antranikian, G.; Liebl, W. Genome sequence of Picrophilus
torridus and its implications for life around pH 0. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 9091-9096.

(52) Bates, R. B.; Byrne, D. N.; Kane, V. V.; Miller, W. B.; Taylor, S. R. N.m.r.
characterization of trehalulose from the excrement of the sweet potato withefly,
Bemisia tabaci. Carbohydr. Res. 1990, 201, 342-345.

(53) Thompson, J.; Robrish, S. A.; Pikis, A.; Brust, A.; Lichtenthaler, F. W.
Phosphorylation and metabolism of sucrose and its five linkage-isomeric
alpha-D-glucosyl-D-fructoses by Klebsiella pneumoniae. Carbohydr. Res. 2001,
331, 149-161.Kuriki, T.; Imanaka, T. The concept of the alpha-amylase family:
structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 1999,
87, 557-565.

(54) Watanabe, K.; Miyake, K.; Suzuki, Y. Identification of catalytic and
substrate-binding site residues in Bacillus cereus ATCC7064
oligo-1,6-glucosidase. Biosci. Biotechnol. Biochem. 2001, 65, 2058-2064.

(55) Zhang, D.; Li, N.; Lok, S. M.; Zhang, L. H.; Swaminathan, K. Isomaltulose
synthase (PalI) of Klebsiella sp. LX3. Crystal structure and implication of
mechanism. J. Biol. Chem. 2003, 278, 35428-35434.

(56) Dworschak, E. Nonenzyme browning and its effect on protein nutrition. Crit.
Rev. Food. Sci. Nutr. 1980, 13, 1-40.

(57) Fennema, O. R. Carbohydrates. In Food Chemistry, 2nd ed.; Marcel Dekker, Inc.
: New York, 1985; pp 96-105.

(58) Kuriki, T.; Imanaka, T. The concept of the alpha-amylase family: structural
similarity and common catalytic mechanism. J. Biosci. Bioeng. 1999, 87,
557-565.

(59) Koh, S.; Kim, J.; Shin, H. J.; Lee, D.; Bae, J.; Kim, D.; Lee, D. S. Mechanistic
study of the intramolecular conversion of maltose to trehalose by Thermus
caldophilus GK24 trehalose synthase. Carbohydr. Res. 2003, 338, 1339-1343.

(60) Uitdehaag, J. C.; Mosi, R.; Kalk, K. H.; van der Veen, B. A.; Dijkhuizen, L.;
Withers, S. G.; Dijkstra, B. W. X-ray structures along the reaction pathway of
cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family.
Nat Struct. Biol. 1999, 6, 432-436.

(61) Brayer, G. D.; Sidhu, G.; Maurus, R.; Rydberg, E. H.; Braun, C.; Wang, Y.;
Nguyen, N. T.; Overall, C. M.; Withers, S. G. Subsite mapping of the human
pancreatic alpha-amylase active site through structural, kinetic, and mutagenesis
techniques. Biochemistry 2000, 39, 4778-4791.

(62) Timmins, J.; Leiros, H. K.; Leonard, G.; Leiros, I.; McSweeney, S. Crystal
structure of maltooligosyltrehalose trehalohydrolase from Deinococcus
radiodurans in complex with disaccharides. J. Mol. Biol. 2005, 347, 949-963.

(63) Jensen, M. H.; Mirza, O.; Albenne, C.; Remaud-Simeon, M.; Monsan, P.;
Gajhede, M.; Skov, L. K. Crystal structure of the covalent intermediate of
amylosucrase from Neisseria polysaccharea. Biochemistry 2004, 43, 3104-3110.

(64) Shaw, J. F.; Sheu, J. R. Production of high-maltose syrup and high-protein flour
from rice by an enzymatic method. Biosci. Biotechnol. Biochem. 1992, 56,
1071-1073.

(65) Shaw, J. F. Production of high-maltose syrup and high-protein byproduct from
materials that contain starch and protein by enzymatic process. 1994, US patent
5312739.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top