跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/25 06:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭國狄
研究生(外文):Kuo Ti Peng
論文名稱:以奈米水膠治療骨髓炎及人工髖關節鬆脫生物標記之研究
論文名稱(外文):Treatment of Osteomyelitis with Hydrogel Nanoparticles & Identification of biomakers in loosened total hip arthroplasty
指導教授:張沛鈞張沛鈞引用關係施信農
指導教授(外文):P. J. ChangH. N. Shih
學位類別:博士
校院名稱:長庚大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
論文頁數:107
中文關鍵詞:新式溫感型奈米水膠骨髓炎抗生素蛋白質體研究法人工髖關節鬆脫生物標記
外文關鍵詞:osteomyelitisteicoplanin-encapsulatedhydrogel nanoparticlesLoosened Total Hip ArthroplastyROS-associated Makers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:584
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第壹部份
題目 : 以新式溫感型奈米水膠包埋抗生素治療骨髓炎

骨髓炎引起發炎反應通常會造成大量骨缺損及附近軟組織破壞。治療上採用大範圍清創手術及抗生素治療四至六週,為避免長期使用抗生素的併發症產生,使用局部攜帶抗生素系統治療骨髓炎是目前世界上發展的新趨勢。在此我們研發一項新式溫感型奈米水膠(由mPEG 及 PLGA 組成)包埋 Teicoplanin 治療骨髓炎,奈米水膠材料特性將被詳細評估及測試,並且近一步使用兔子骨髓炎實驗模型作為動物實驗體內基礎。結果顯示此新式溫感型奈米水膠具備以下特點 : 1.製程容易。2. 有百分之百的藥物包埋率。3. 接近直線型的藥物釋放曲線。4. 可注射式的設計,適合小傷口使用,增加可應用性。5. 以及高度生物相容性。和傳統使用骨水泥包埋抗生素治療骨髓炎相比較,在組織學、分子生物學、及組織免疫學成效上,兩者治療成效相當類似。因此我們認為新式溫感型奈米水膠,在治療骨髓炎,效果相當顯著。在其他骨科相關疾病上,新式溫感型奈米水膠將有相當廣泛的應用範圍。


第貳部分
題目: 使用蛋白質體研究法分析人工髖關節鬆脫的生物標記

人工髖關節鬆脫是接受關節置換手術後最大的併發症,針對鬆脫機轉,已經有許多理論被提出。人工關節磨耗出的顆粒,引發發炎反應,進一步活化噬骨細胞,造成骨溶解及人工髖關節零件鬆脫,是目前最常被提出的理論。而特殊的細胞激素;如干擾素及介白質等,也會活化噬骨細胞。其他一些轉譯因子如MAP Kinase 、 NFκB ,也會活化噬骨細胞造成人工髖關節鬆脫。
近幾年許多反應氧族(ROS)如(hydrogen peroxide [H2O2], hydroxyl radicals radical [OH*] and superoxide anion [O2-*]).在髖關節零件鬆脫的機轉中扮演的角色越來越被重視。在這篇研究中,我們使用蛋白質體研究法,分析人工髖關節鬆脫患者關節液中的生物標記。成功的發現transthyretin (TTR) 及 peroxiredoxin 2 (PRDX 2) 兩個ROS相關蛋白質,並且進一步分析驗證ROS相關抗氧化媒(Catalase, SOD 1, SOD 2 and SOD 3)在髖關節零件鬆脫中的角色。經由西方點墨法及組織免疫染色法,證實在人工髖關節鬆脫患者的關節液中,TTR 及 SOD 3 相對於人工髖關節未鬆脫及初置換人工髖關節患者而言,表現明顯上升。並且在人工髖關節鬆脫患者的關節囊上,PDRX 2及SOD 2 的表現相對於人工髖關節未鬆脫及初置換人工髖關節患者,也有明顯的上升。以上幾個ROS相關性的蛋白質我們相信是文獻上第一次被證實的人工髖關節的生物標記,對於人工髖關節鬆脫的機轉及探討,將有相當大的助益。


Part I : Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles
Osteomyelitis characterized by an inflammatory response often leads to bone loss and the spread of bacterial infection to surrounding soft tissues. To overcome the side effects induced by the systemic antibiotic treatment for osteomyelitis, recent investigations have explored the use of antibiotic-loaded undegradable or biodegradable delivery implants at the infected bone. Here, we show a novel biodegradable thermosensitive implant composed of poly(ethylene glycol) monomethyl ether (mPEG) and poly(lactic-co-glycolic acid) (PLGA) copolymer as a sol-gel drug delivery system for treating bone infection. The physical properties of a series of mPEG-PLGA nanocomposites, including the critical micelle concentration (CMC), particle size, polyindex (PI), sol-gel transition, viscosity and degradation rate, have been characterized in vitro. This sol-to-gel drug delivery system could provide several advantages in treating osteomyelitis, including easy preparation, 100 % encapsulated rate, near-linear sustained release of drugs, injectable design and in situ gelling at the target tissue. Similar to the undegradable teicoplanin-impregnated polymethylmethacylate (PMMA) bone cements, we showed that implantation of the mPEG-PLGA hydrogel containing teicoplanin was effective for treating osteomyelitis in rabbits as detected by the histological staining and immunoblotting analyses. The use of the mPEG-PLGA-based biodegradable hydrogels may hold great promise as a therapeutic strategy for other infected diseases.


Part II : Identification of ROS-associated Makers in Aseptic Loosened Total Hip Arthroplasty
Aseptic loosening remains the major complication after total hip arthroplasty (THA). Several theories on the cause of aseptic loosening have been proposed. Wear-generated particles are commonly accepted that the initiating cause with an inflammatory response to phagocytosis and resulting in increased proliferation and differentiation of osteoclast precursors into mature osteoclasts. Progressive osteolysis caused by active-osteoclasts can result in prosthesis failure, eventually requiring revision surgery. More recently, it has been established that wear also inhibits the protective actions of antiosteoclastogenic cytokines such as interferon gamma, thus promoting differentiation of macrophages to bone-resorbing osteoclasts. At a molecular level, wear particles activate MAP kinase cascades, NFκB and other transcription factors, and induce expression of suppressors of cytokine signaling. Besides particles, stress shielding, high fluid pressure, genetic variations, and endotoxin were also considered the possible etiologies for loosening. Recently, the role of reactive oxygen species (ROS) (hydrogen peroxide [H2O2], hydroxyl radicals radical [OH*] and superoxide anion [O2-*]) as products of metal corrosion, mostly of titanium, is more often discussed with respect to the overall process of aseptic loosening [8]. In addition, a number of groups studied the influence of H2O2 and ROS from macrophages in process of inflammatory after implantation of prosthesis.
However, aseptic loosening of joint implants is still a major problem and need to identify the possible makers. In present study, a proteomic approach was applied to discover novel loosened THA-specific proteins by comparing the expression profiles of synovial fluid from patients with loosened or non-loosened implant in-vivo. Two ROS-associated proteins, including transthyretin (TTR) and peroxiredoxin 2 (PRDX 2), were identified and verified. We also evaluated the role of ROS-associated enzymes (catalase, SOD 1, SOD 2 and SOD 3) in joint synovial fluid and capsule of loosened THA. Compare to non-loosened THA and primary groups, TTR and SOD 3 in synovial fluid of hip joint shows high expression in loosened THA group (p<0.05). PDRX 2 and SOD 2 in hip capsule demonstrate high expression in loosened THA group than non-loosened and primary THA groups
To our knowledge, these special biomakers were firstly identified in loosen or non-loosened THA in present study. We believe increased knowledge of the biomakers in joint fluid or hip capsule of THA may prove useful for understanding the causes of THA failure.



指導教授推薦書
論文口試委員會審定書
長庚大學授權書
誌謝 .................................................v
中文摘要 .............................................vi
第壹部份 .............................................vi
第貳部分 .............................................vii
英文摘要 .............................................viii
目錄 .................................................xi
Directory of Figures ................................xvi
Directory of Tables ................................ xviii
Abstract-part 1 ......................................viii
Abstract-part 2 ......................................ix
Chapter 1 Difficult in Management of osteomyelitis ...x
1.1 Background of osteomyelitis ...............1
1.2 Epidemiology of osteomyelitis ................3
1.3 Classification of osteomyelitis ..................4
1.4 Microbiology of osteomyelitis ....................5
1.5 Pathogenesis of osteomyelitis ....................6
1.6 Diagnosis of Osteomyelitis....................... 8
1.7 Treatment of osteomyelitis ....................... 9
1.7.1 Medicine ..........................................9
1.7.2 Surgery ...........................................10
1.7.3 Adjuvant Therapy ...................................10
1.8 Complications of systemic medical treatment ......11
1.9 Local antibiotic delivery system ..................11
1.10 esearch motive – Develop a novel local delivery ....12
Chapter 2 Study on Novel Biodegradable Thermo-sensitive Hydrogels ...............................................13

2.1 Introduction of biodegradable thermo-sensitive hydrogels ..............................................14
2.2 Advantages of our biodegradable thermo-sensitive hydrogels ...............................................15
2.3 Materials and Methods .....................16
2.3.1. Chemicals .........................................16
2.3.2. Synthesis of mPEG–PLGA diblock copolymers ...16
2.3.3. Proton nuclear magnetic resonance (1H NMR) ....17
2.3.4. Gel permeation chromatography (GPC) ..........17
2.3.5. Critical micelle concentration (CMC) determination 18
2.3.6. Micelle size determination ..........18
2.3.7. Determination of sol–gel phase transition .....18
2.3.8. Viscosity of sol–gel transition .........19
2.4 Results and Discussion ..................19
2.4.1. Characterization of the mPEG–PLGA hydrogel ....19
2.4.2. In vitro drug release .................22
2.5 In vitro preliminary results of novel hydrogels containing teicoplanin demonstrated high potential to
treat osteomyelitis ...................................23

Chapter 3 Treatment of osteomyelitis with teicoplanin-
encapsulated biodegradable thermosensitive hydrogel nanoparticles in a rabbit model .......................24
3.1 In vivo study ...................................25
3.1.1. Production of osteomyelitis in a rabbit model .....25
3.1.2. Histological study ................................26
3.1.3. Western blot analysis .......................26
3.2 Statistic analysis ......................27
3.3 In vivo evaluation ....................28
3.4 Conclusions ........................................31

Part 2 Proteomic Identification of ROS-associated Makers in Aseptic Loosened Total Hip Arthroplasty ...............32
Chapter 4 Proteomic analysis of synovial biomakers in aseptic loosened total hip arthroplasty ......33
4.1 Introduction ...................................34
4.2Mateials and methods .................................35
4.2.1 Participants ......................................35
4.2.2 Radiographic study ................................35
4.2.3 Preparation of synovial fluid of joint .......36
4.2.4 Isoelectric focusing and gel electrophoresis (2-DE) 37
4.2.5 Silver staining ................38
4.2.6 Gel imaging ........................................38
4.2.7 In gel tryptic digestion and protein identification - Matrix-assisted laser desorption ionization time-of-flight mass spectrometry .....................................38
4.2.8 Veridation of identified proteins- Western blot analysis and Immunohistochemistry(IHC) ......39
4.3 Statistical analysis ..........................40
4.4 Results .......................................41
4.4.1 Clinical status of the participants ...........41
4.4.2 2-DE and protein identification ..............41
4.4.3 Varidation of identified protein and associated-ROS enzymes .................................................42
4.5 Discussion ..........................................43
5. Conclusions ..........................................48
Directory of Figures ....................................49
Directory of Tables .....................................71
Directory of Scheme .....................................73
Reference..............................................74
Addendum..............................................84

1. B.D. Browner, Skeletal trauma basic science, management, and reconstruction. In: B.D. Browner, Editor, MDConsult ((ed 4)), Saunders/Elsevier, Philadelphia, PA (2009).
2. F.A. Waldvogel, G. Medoff and M.N. Swartz, Osteomyelitis: A review of clinical features, therapeutic considerations and unusual aspects, N Engl J Med 282 (1970), pp. 198–206.
3. B.D. Browner, Skeletal trauma basic science, management, and reconstruction ((ed 3)), W. B. Saunders, Philadelphia, PA (2003).
4. W.J. Gillespie, Epidemiology in bone and joint infection, Infect Dis Clin North Am 4 (1990), pp. 361–376.
5. Harrison's principles of internal medicine, McGraw-Hill Medical (2008)
6. N. Singh, D.G. Armstrong and B.A. Lipsky, Preventing foot ulcers in patients with diabetes, J Am Med Assoc 293 (2005), pp. 217–228.
7. B.A. Lipsky, R.E. Pecoraro and L.J. Wheat, The diabetic foot: Soft tissue and bone infection, Infect Dis Clin North Am 4 (1990), pp. 409–432.
8. A.R. Berendt, E.J. Peters and K. Bakker et al., Diabetic foot osteomyelitis: A progress report on diagnosis and a systematic review of treatment, Diabetes Metab Res Rev 24 (suppl 1) (2008), pp. S145–S161.
9. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, Elsevier/Churchill Livingstone (2005)

10. F.A. Waldvogel, G. Medoff and M.N. Swartz, Osteomyelitis: A review of clinical features, therapeutic considerations and unusual aspects (second of three parts), N Engl J Med 282 (1970), pp. 260–266.
11. F.A. Waldvogel, G. Medoff and M.N. Swartz, Osteomyelitis: A review of clinical features, therapeutic considerations and unusual aspects: 3. Osteomyelitis associated with vascular insufficiency, N Engl J Med 282 (1970), pp. 316–322.
12. G. Cierny III, J.T. Mader and J.J. Penninck, A clinical staging system for adult osteomyelitis, Clin Orthop Relat Res (2003), pp. 7–24.
13. N. Sabir, S. Rafi and I. Hashmi et al., Lumbar osteomyelitis with Pseudomonas, J Pak Med Assoc 57 (2007), pp. 517–518.
14. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, Elsevier/Churchill Livingstone (2005)
15. E. Maman, J. Bickels and M. Ephros et al., Musculoskeletal manifestations of cat scratch disease, Clin Infect Dis 45 (2007), pp. 1535–1540.
16. Stratov, T.M. Korman and P.D. Johnson, Management of aspergillus osteomyelitis: Report of failure of liposomal amphotericin B and response to voriconazole in an immunocompetent host and literature review, Eur J Clin Microbiol Infect Dis 22 (2003), pp. 277–283.
17. G. Petitjean, U. Fluckiger and S. Scharen et al., Vertebral osteomyelitis caused by non-tuberculous mycobacteria, Clin Microbiol Infect 10 (2004), pp. 951–953.
18. P. Haller, T. Bruderer and S. Schaeren et al., Vertebral osteomyelitis caused by Actinobaculum schaalii: A difficult-to-diagnose and potentially invasive uropathogen, Eur J Clin Microbiol Infect Dis 26 (2007), pp. 667–670.
19. G. Mouzopoulos, M. Stamatakos and M. Tzurbakis et al., Lower extremity infections by Vibrio vulnificus, Chirurgia 103 (2008), pp. 201–203.
20. S. Vasoo, S.B. Yeo and P.L. Lim et al., Efficacy of voriconazole for Scedosporium apiospermum skull base osteomyelitis: Case report and literature review, Int J Antimicrob Agents 31 (2008), pp. 184–185.
21. A. Amit, K. Sudish and I.K. Pople, Primary calvarial cryptococcal osteomyelitis in a patient with idiopathic lymphopenia, Acta Neurochir 150 (2008), pp. 713–714.
22. D.P. Lew and F.A. Waldvogel, Osteomyelitis, N Engl J Med 336 (1997), pp. 999–1007.
23. E. Maman, J. Bickels and M. Ephros et al., Musculoskeletal manifestations of cat scratch disease, Clin Infect Dis 45 (2007), pp. 1535–1540.
24. J.M. Patti, T. Bremell and D. Krajewska-Pietrasik et al., The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis, Infect Immun 62 (1994), pp. 152–161.
25. G. Petitjean, U. Fluckiger and S. Scharen et al., Vertebral osteomyelitis caused by non-tuberculous mycobacteria, Clin Microbiol Infect 10 (2004), pp. 951–953.
26. P. Haller, T. Bruderer and S. Schaeren et al., Vertebral osteomyelitis caused by Actinobaculum schaalii: A difficult-to-diagnose and potentially invasive uropathogen, Eur J Clin Microbiol Infect Dis 26 (2007), pp. 667–670.
27. V. Kak and P.H. Chandrasekar, Bone and joint infections in injection drug users, Infect Dis Clin North Am 16 (2002), pp. 681–695.
28. P.K. Henke, S.A. Blackburn and R.W. Wainess et al., Osteomyelitis of the foot and toe in adults is a surgical disease: Conservative management worsens lower extremity salvage, Ann Surg 241 (2005), pp. 885–892
29. M. Abazinge, T. Jackson, Q. Yang and G. Owusu-Ababio, Comparison of in vitro and in vivo release characteristics of sustained release of ofloxacin microspheres, Drug Deliv 7 (2) (2000), pp. 77–81.
30. I. Yenice, S. Calis, B. Atilla, H.S. Kaş, M. Ozalp and M. Ekizoğlu et al., In vitro/in vivo evaluation of the efficiency of teicoplanin-loaded biodegradable microparticles formulated for implantation to infected bone defects, J Microencapsul 20 (6) (2003), pp. 705–717.
31. A.S. Hoffman, Hydrogels for biomedical applications, Adv. Drug Del. Rev. 43 (2002), pp. 3–12.
32. R. Langer, Advances in biomaterials, drug delivery, and bionanotechnology, AICHE J. 49 (2003), pp. 2990–3006.
33. W.E. Hennink and C.F. van Nostrum, Novel crosslinking methods to design hydrogels, Adv. Drug Del. Rev. 54 (2002), pp. 13–36.
34. T.G. Park and A.S. Hoffman, Deswelling characteristics of poly(N-isopropylacrylamide) hydrogel, J. Appl. Polym. Sci. 52 (1994), pp. 85–89.
35. L. Qiu, Novel degradable polyphosphazene hydrogel beads for drug controlled release, J. Appl. Polym. Sci. 87 (2003), pp. 986–992.
36. G.D. Kang, S.H. Cheon, G. Khang and S. Song, Thermosensitive poly(organophosphazene) hydrogels for a controlled drug delivery, Eur. J. Pharm. Biopharm. 63 (2006), pp. 340–346.
37. J.B. Lee, K.W. Chun, J.J. Yoon and T.G. Park, Controlling degradation of acid-hydrolyzable Pluronic hydrogels by physical entrapment of poly(lactic acid-co-glycolic acid) microspheres, Macromol. Biosci. 4 (2004), pp. 957–962.
38. K.W. Chun, J.B. Lee, S.H. Kim and T.G. Park, Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels, Biomaterials 26 (2005), pp. 3319–3326.
39. J.G.W. Wenzel, K.S.S. Balaji, K. Koushik, C. Navarre, S.H. Duran, C.H. Rahe and U.B. Kompella, Pluronic F127 gel formulations of Deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle, J Control Release 85 (2002), pp. 51–59.
40. B. Jeong, Y.H. Bae, D.S. Lee and S.W. Kim, Biodegradable block copolymers as injectable drug-delivery systems, Nature 388 (1997), pp. 860–862.
41. Y.J. Kim, S. Choi, J.J. Koh, M. Lee, K.S. Ko and S.W. Kim, Controlled release of insulin from injectable biodegradable triblock copolymer, Pharm. Res. 18 (2001), pp. 548–550.
42. E. Kiss, E. Kutnyánszky and I. Bertóti, Modification of poly(lactic/glycolic acid) surface by chemical attachment of poly(ethylene glycol), Langmuir 26 (3) (2010), pp. 1440–1444. 1. A.S. Hoffman, Hydrogels for biomedical applications, Adv. Drug Del. Rev. 43 (2002), pp. 3–12.
43. K. Nagahama, M. Hashizume, H. Yamamoto, T. Ouchi and Y. Ohya, Hydrophobically modified biodegradable poly(ethylene glycol) copolymers that form temperature-responsive nanogels, Langmuir 25 (17) (2009), pp. 9734–9740.
44. M. Qiao, D. Chen, X. Ma and Y. Liu, Injectable biodegradable temperature-responsive PLGA–PEG–PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels, Int J Pharm 294 (1–2) (2005), pp. 103–112.
45. J.P. Chen and T.H. Cheng, Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells, Macromol Biosci 6 (12) (2006), pp. 1026–1039.
46. I. Yenice, S. Caliş, H. Kaş, M. Ozalp, M. Ekizoğlu and A. Hincal, Biodegradable implantable teicoplanin beads for the treatment of bone infections, Int J Pharm 242 (1–2) (2002), pp. 271–275.
47. T. Tuzuner, I. Sencan, D. Ozdemir, M. Alper, S. Duman and T. Yavuz et al., In vivo evaluation of teicoplanin- and calcium sulfate-loaded PMMA bone cement in preventing implant-related osteomyelitis in rats, J Chemother 18 (6) (2006), pp. 628–633.
48. A. Chattopadhyay and E. London, Fluorimetric determination of critical micelle concentration avoiding interference from detergent charge, Anal Biochem 139 (2) (1984), pp. 408–412.
49. Y. Chen, F. Wang and H.A. Benson, Effect of formulation factors on incorporation of the hydrophilic peptide dalargin into PLGA and mPEG–PLGA nanoparticles, Biopolymers 90 (5) (2008), pp. 644–650.
50. M.S. Smeltzer, J.R. Thomas, S.G. Hickraon, R.A. Skinner, C.L. Nelson and D. Griffith et al., Characterization of a rabbit model of staphylococcal osteomyelitis, J Orthop Res 15 (3) (1997), pp. 414–421.
51. C.W. Norden, Experimental osteomyelitis, a description of the model, J Infect Dis 122 (5) (1970), pp. 410–418.
52. C.G. Ambrose, T.A. Clyburn, K. Louden, J. Joseph, J. Wright and P. Gulati et al., Effective treatment of osteomyelitis with biodegradable microspheres in a rabbit model, Clin Orthop Relat Res 421 (4) (2004), pp. 293–299.
53. W.W. Brien, E.A. Salvati, R. Klein, B. Brause and S. Stern, Antibiotic impregnated bone cement in total hip arthroplasty. An in vivo comparison of the elution properties of tobramycin and vancomycin, Clin Orthop Relat Res 296 (11) (1993), pp. 242–248.
54. M.W. Nijhof, W.J.A. Dhert, A. Fleer, H.C. Vodely and A.J. Verbout, Prophylaxis of implant-replated staphylococcal infections using tobramycin-containing bone cement, J Biomed Mater Res 52 (4) (2000), pp. 754–761.
55. M.W. Nijhof, A. Fleer, K. Hardus, H.C. Vogely, L.M. Schouls and A.J. Verbout et al., Tobramycin-containing bone cement and systemic cefazolin in a one-stage revision: treatment of infection in a rabbit model, J Biomed Mater Res 58 (6) (2001), pp. 747–753.
56. S. Gitelis and G.T. Brebach, The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant, J Orthop Surg 10 (1) (2002), pp. 53–60.
57. Z. Wachol-Drewek, M. Pfeiffer and E. Scholl, Comparative investigation of drug delivery of collagen implants saturated in antibiotic solutions and a sponge containing gentamicin, Biomaterials 17 (17) (1996), pp. 1733–1738.
58. Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C. Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop 77 (2) (2006), pp.177–197.
59. Jacobs JJ, Hallab NJ, Urban RM, Wimmer MA. Wear particles. JBone Joint Surg Am 88 (Suppl. 2) (2006), pp.99–102.
60. Soloviev A, Schwarz EM, Kuprash DV, Nedospasov SA, Puzas JE, Rosier R N, O'Keefe RJ. The role of p105 protein in NFkappaB activation in ANA-1 murine macrophages following stimulation with titanium particles. J Orthop Res 20 (4) (2002), pp.714–722.
61. Ozmen I, Naziroglu M, Okutan R. Comparative study of antioxidant enzymes in tissues surrounding implant in rabbits. Cell Biochem Funct 24 (3) (2006), pp.275–281..
62. Tsaryk R, Kalbacova M, Hempel U, Scharnweber D, Unger RE, Dieter P, Kirkpatrick CJ, Peters K. Response of human endothelial cells to oxidative stress on Ti6Al4V alloy. Biomaterials 28 (5) (2007), pp.806-13.
63. Paprosky WG, Perona PG, Lawrence JM. Acetabular defect classification and surgical reconstruction in revision arthroplasty: A 6-year follow-up evaluation. J Arthroplasty. 9 (5) (1994), pp.33–44.
64. Denkert C, Koch I, von Keyserlingk N, et al. Expression of the ELAV-like protein HuR in human colon cancer: association with tumor stage and cyclooxygenase-2. Mod Pathol 19 (4) (2006), pp.1261-1269.
65. Canale ST. Campbell's operative orthopaedics (10th ed.), Mosby, Philadelphia (2003).
66. Engh CA, Bobyn JD, The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplast., Clin Orthop Relat Res 7 (1988), pp. 231.
67. Bauer SM, Bauer RJ, Velazquez OC. Angiogenesis, vasculogenesis, and induction of healing in chronic wounds. Vasc Endovasc Surg 39 (3) (2005), pp. 293–306.
68. Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol 280 (2001), pp.719–741.
69. Cai H. Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc Res 68 (2005), pp.26–36.
70. Seo JH, Lim JC, Lee DY, Kim KS, Piszczek G, Nam HW, Kim YS, Ahn T, Yun CH, Kim K, Chock PB, Chae HZ. Novel protective mechanism against irreversible hyperoxidation of peroxiredoxin: Nalpha-terminal acetylation of human peroxiredoxin II. J Biol Chem 284 (20) (2009), pp.13455-13465.
71. Manta B, Hugo M, Ortiz C, Ferrer-Sueta G, Trujillo M, Denicola A. The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch Biochem Biophys 484 (2) (2009), pp.146-154.
72. Sekijima Y, Kelly JW, Ikeda S. Pathogenesis of and therapeutic strategies to ameliorate the transthyretin amyloidoses. Curr Pharm Des 14 (30) (2008), pp. 3219-3230.
73. Prapunpoj P, Leelawatwattana L. Evolutionary changes to transthyretin: structure-function relationships. FEBS J 276 (19) (2009), pp.5330-5341.
74. Hennebry SC. Evolutionary changes to transthyretin: structure and function of a transthyretin-like ancestral protein. FEBS J 276 (19) (2009), pp.5367-5379.





連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林國慶、柳婉郁(2007)全民造林政策之執行成果與政策分析。農業與經濟38:31-65。
2. 林俊秀(1993),林農林業經營意願與經營行為之關係。林業試驗所研究報告季刊8(2):149-157。
3. 李久先、顏添明、曾聰堯(2003),全民造林運動私有林主滿意度之研究─以台中縣為例。林業研究季刊25(3):11~26。
4. 李久先、顏添明、許哲維(2007b),私有林主對於造林獎勵政策認知及政策態度之探討─以台中縣為例。林業研究季刊29(4):43-54。
5. 李久先、顏添明、許哲維(2007a),私有林主經營意願與造林獎勵方式關係之探討─以台中縣為例。林業研究季刊29(1):39-50。
6. 李久先、顏添明(2001),全民造林運動造林樹種之經濟價值探討,林業研究季刊23(2):35-45。
7. 陳宏基、林喻東(2004),林地放領前後林農營林意願之研究─以嘉義縣赤司農場為例。林業研究季刊26(2):23-32。
8. 陳連勝(1999),全民造林運動經濟可行性之研究。林業研究季刊21(1):93-112。
9. 顏添明、李久先、許惠瑜、劉兆昌(2004),推廣人員對於平地景觀造林計畫相關問題看法之討論。林業研究季刊26(2):33-42。
10. 顏添明、李久先、許哲維(2008),私有林主之參與經驗與造林獎勵政策關係之探討─以台中縣為例。林業研究季刊30(3):53-64。
11. 顏添明、李久先、楊志義(2002),造林獎勵政策相關問題之探討。林業研究季刊24(2):1-12。
12. 羅凱安、張雅玲(2007)承租人對國有租地造林收回計畫之反應-以嘉義、屏東林區管理處所轄國有租地造林為例。林業研究季刊29(2):43-54。