跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉玉英
研究生(外文):Yu-Ying Yeh
論文名稱:貓爪藤活性成分分析及其固體分散劑型之製備與評估
論文名稱(外文):Determination of oxindole alkaloids in Uncaria tomentosa and preparation and evaluation of Uncaria tomentosa solid dispersion formulations
指導教授:吳育澤
指導教授(外文):Yu-Tse Wu
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:藥學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:111
中文關鍵詞:貓爪藤微波輔助萃取離子液體羥&;#21554&;#21722生物鹼田口法固體分散
外文關鍵詞:Uncaria tomentosamicrowave-assisted extractionionic liquidoxindole alkaloidsorthogonal array designsolid dispersion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
貓爪藤廣泛使用在治療發炎性的疾病。貓爪藤成分中的羥&;#21554;&;#21722;生物鹼被視為最具生物活性之指標成分。本篇研究目的為建立一個微波輔助萃取方法,並結合高效能液相層析-光二極陣列檢測器及高效能液相層析質譜儀,用於快速萃取、定性以及定量貓爪藤成分中的主要指標成分羥&;#21554;&;#21722;生物鹼,包括rhynchophylline, pteropodine, isomitraphylline 及 isopteropodine。分析方法建立及確效後,接著開發貓爪藤固體分散劑型,藉由劑型開發而增加羥&;#21554;&;#21722;生物鹼的溶解度及累積溶離釋出率。
分析條件探討包括固定相選擇、移動相pH值、流速。微波輔助萃取以實驗設計法中的田口法設計實驗變因,微波輔助萃取優化參數如微波功率、萃取時間、萃取物與溶媒比例及離子液體種類。而固體分散劑型之賦形劑則會選出最適當的界面活性劑以及載體。分析方法優化結果,使用的管柱為Monolithic RP-18e (100 &;#180; 4.6 mm),移動相為 pH 4.0的0.01 M醋酸銨溶液以及甲醇:乙&;#33096; (1:1, v/v),流速設定為1.5 mL/min,偵測波長為245 nm,分析時間20分鐘,此分析方法具有良好線性關係 (r2 ≧ 0.9999),高準確度 (99.6-100.6%)、精密度(RSD ≦ 1.8 %)及回收率 (≧ 98.3%)。微波輔助萃取實驗結果顯示以微波功率為900瓦,加熱時間60秒,而萃取物與溶媒比例為1:40 (w/v),萃取溶媒則是使用1-hexyl-3-methylimidazolium bromide,可萃取出最高含量之羥&;#21554;&;#21722;生物鹼,萃取結果為傳統萃取之430%。固體分散劑型所使用的載體為聚羥亞烴188,而界面活性劑使用十二烷基硫酸鈉或1-甲基-2-?m咯烷酮,固體分散劑型之成品相較於對照組之溶解度提高290%,而在溶離試驗,累積溶離釋出百分比提高200%。
本研究開發之分析方法成功地應用於分析貓爪藤市售品及貓爪藤固體分散製劑。微波輔助萃取方法也能有效率地萃取出貓爪藤之有效成分羥&;#21554;&;#21722;生物鹼,而固體分散劑型的體外試驗結果顯示此固體分散劑型能提高溶解度及溶離釋出率。


Uncaria tomentosa (cat’s claw) is widely used for the treatment of inflammatory diseases. Oxindole alkaloids are regarded as the most important components responsible for the biological activities attributed to the plant. A rapid method was established using microwave-assisted extraction (MAE) combined with HPLC–PDA and HPLC-MS for the extraction, identification, and quantification of oxindole alkaloids (rhynchophylline, pteropodine, isomitraphylline, and isopteropodine) in U. tomentosa. After method established and validated, we developed a delivery system for enhancing the solubility and dissolution of oxindole alkaloids by solid dispersion technique.
We examined the effects of HPLC parameters, such as flow rate and pH of mobile phase. Orthogonal array design method was used to estimate optimum the MAE extraction conditions. The microwave parameters including irradiation power, extraction time, solid–liquid ratio and kinds of ionic liquids were optimized. Then, searching for a carrier and a surfactant to be the excipient for formulation of solid dispersion. The compounds were separated on a Monolithic Rp-18e column (4.6 × 100 mm), mobile phase containing 10 mM ammonium acetate solution (pH 4.0) and a mixture of methanol and acetonitrile (1:1, v/v), flow rate was 1.5 mL/min. Detection wavelength was set at 245 nm whthin 20 minutes. The HPLC method showed satisfactory linearity (r2 &;#61619; 0.9999), accuracy (99.6-100.6%), precision (RSD &;#61603; 1.8 %), and recovery (&;#61619; 98.3%). Based on oxindole alkaloids content, the maximum predicted oxindole alkaloids under the optimised conditions (900W irradiation power, 60 s extraction time, the ratio of solid to liquid was 1:40, and1-hexyl-3-methylimidazolium bromide as ionic liquid). The oxindole alkaloids content was 430% compared to traditional decoction method. The optimized formulations of U. tomentosa solid dispersion were successfully prepared within N- methylpyrrolidone to be the surfactant and poloxamer 188 to be the carrier. The solubility improvement reached 290% and cumulative dissolution percentage of the oxindole alkaloids was improved approximately 200% compared with the control group.
Finally, the new method was applied to investigate the content of oxindole alkaloids in U. tomentosa of commercial products and solid dispersion. MAE method effectively extract the oxindole alkaloids in U. tomentosa. And the result of in vitro studies showed that U. tomentosa solid dispersion enhanced the solubility and dissolution.


目錄 I
表次目錄 IV
圖次目錄 V
摘要 VII
Abstract VIII
縮寫表 X
壹、 緒論 1
一、 貓爪藤基本概述 1
(一) 貓爪藤介紹 1
(二) 貓爪藤藥理活性介紹 1
(三) 貓爪藤之活性成分 2
二、 文獻回顧 4
三、 微波輔助萃取法 8
(一) 微波原理介紹 8
(二) 微波輔助萃取應用 10
(三) 離子液體定義及其應用 11
四、 實驗設計法 14
五、 固體分散劑型 17
(一) 固體分散劑型概述 17
(二) 固體分散劑型成分釋出機轉 18
(三) 固體分散劑型製備方法 18
(四) 固體分散劑型常用載體介紹 22
六、 研究目的 25
貳、 實驗材&;#63934;與儀器設備 27
一、 試藥與試劑 27
(一) 標準品 27
(二) 貓爪藤粗萃物及市售品 27
(三) 微波輔助萃取溶媒 27
(四) 固體分散劑型之載體 28
(五) 固體分散劑型之界面活性劑 28
(六) 溶離試驗試劑 29
(七) 溶媒 29
二、 實驗儀器設備 30
三、 軟體 31
參、 實驗方法 33
一、 貓爪藤分析方法開發 33
(一) 建立高效能液相層析-光二極陣列檢測器 (HPLC-PDA)之分析方法 33
(二) 建立高效能液相層析質譜儀 (HPLC-MS)之分析方法 34
二、 微波輔助萃取法 34
(一) 微波輔助萃取法條件優化 34
(二) 傳統萃取法 36
三、 高效能液相層析-光二極陣列檢測器 (HPLC-PDA)之分析條件確效 38
(一) 檢量線之配置 39
(二) 同日、&;#63842;日精密度與準確度 39
(三) 回收率 40
四、 市售貓爪藤定量分析 42
(一) 超音波震盪法 42
(二) 微波輔助萃取法 42
五、 固體分散劑型製備 43
(一) 乙醇萃取物萃取方法 43
(二) 賦形劑篩選 43
(三) 固體分散劑型之配方 44
六、 製劑成品評估 46
(一) 溶解度試驗 46
(二) 溶離試驗 46
(三) 安定性試驗 48
七、 統計方法 48
肆、 實驗結果與討論 50
一、 貓爪藤分析方法開發 50
(一) 高效能液相層析-光二極陣列檢測器 (HPLC-PDA)之分析方法 50
(二) 高效能液相層析質譜儀 (HPLC-MS)之分析方法 53
二、 微波輔助萃取 61
(一) 微波輔助萃取法優化結果 61
(二) 傳統萃取法結果 62
三、 高效能液相層析-光二極陣列檢測器 (HPLC-PDA)之分析條件確效 73
(一) 檢量線之配置 73
(二) 同日、&;#63842;日精密度與準確度 74
(三) 回收率 74
四、 市售貓爪藤定量分析 78
(一) 超音波震盪法 78
(二) 微波輔助萃取法 78
五、 固體分散劑型製備 79
(一) 乙醇萃取物萃取方法 79
(二) 賦形劑篩選 79
(三) 固體分散劑型 82
六、 製劑成品評估 85
(一) 溶解度試驗 85
(二) 溶離試驗 85
(三) 安定性試驗 87
伍、 結論 105
陸、 參考文獻 107


[1] G.I. Erowele, A.O. Kalejaiye, Pharmacology and therapeutic uses of cat''s claw, Am. J. Health Syst. Pharm., 66 (2009) 992-995.
[2] M. Ganzera, I. Muhammad, R.A. Khan, I.A. Khan, Improved method for the determination of oxindole alkaloids in Uncaria tomentosa by high performance liquid chromatography, Planta. medica., 67 (2001) 447-450.
[3] M.E. Heitzman, C.C. Neto, E. Winiarz, A.J. Vaisberg, G.B. Hammond, Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae), Phytochemistry, 66 (2005) 5-29.
[4] Phase II Clinical Trial of Uncaria Tomentosa (Cat&;#180;s Claw) in Patients With Advanced Solid Tumors, in 2014.
[5] L.J. Aguilar, R. Percy, M. Adolfo, P. Alberto, R. Baue, R. Eveline, K.C. A, M. Irmgard, Anti-inflammatory activity of two different extracts of Uncaria tomentosa (Rubiaceae), J. Ethnopharmacol., 81 (2002) 271-276.
[6] S.R. Hardin, Cat''s claw: an Amazonian vine decreases inflammation in osteoarthritis, Complement. Ther. Clin. Pract., 13 (2007) 25-28.
[7] M. Agrawal, D. Nandini, V. Sharma, N. Chauhan, Herbal remedies for treatment of hypertension, Int. J. Pharm. Sci. and Res., 1 (2010) 1-21.
[8] J. Vogel, S.F. Bolling, R.B. Costello, E.M. Guarneri, M.W. Krucoff, J.C. Longhurst, B. Olshansky, K.R. Pelletier, C.M. Tracy, R.A. Vogel, Integrating complementary medicine into cardiovascular medicine: a report of the american college of cardiology foundation task force on clinical expert consensus documents, J. Am. Coll. Cardiol., 46 (2005) 184-221.
[9] K. Samuel, V.S. Gasparin, M.R. Cougo, P.E.d. Resend, P. Cabral, O.G. Gonz&;#225;lez, B. Fabiano, Cat''s claw oxindole alkaloid isomerization induced by common extraction methods, Quim. Nova, 36 (2013) 808-814.
[10] Y.-Z. Liang, P. Xie, K. Chan, Quality control of herbal medicines, J. Chromatogr. B, 812 (2004) 53-70.
[11] S. Tan, J.W.H. Yong, C.C. Teo, L. Ge, Y.W. Chan, C.S. Hew, Determination of metabolites in Uncaria sinensis by HPLC and GC–MS after green solvent microwave-assisted extraction, Talanta, 83 (2011) 891-898.
[12] P. Li, S. Li, S. Lao, C. Fu, K.K. Kan, Y. Wang, Optimization of pressurized liquid extraction for Z-ligustilide, Z-butylidenephthalide and ferulic acid in Angelica sinensis, J. Pharm. Biomed. Anal., 40 (2006) 1073-1079.
[13] S. Ritika, G. Aggarwal, G. Aggarwal, Formulation tactics for the delivery of poorly soluble drugs, Int. J. Pharm. Tech. Res., 4 (2012) 914-923.
[14] P. Montoro, V. Carbone, D. Quiroz Jde, F. De Simone, C. Pizza, Identification and quantification of components in extracts of Uncaria tomentosa by HPLC-ES/MS, PCA, 15 (2004) 55-64.
[15] G. Bertol, L. Franco, B.H. Oliveira, HPLC analysis of oxindole alkaloids in Uncaria tomentosa: sample preparation and analysis optimisation by factorial design, Phytochem. Anal., 23 (2012) 143-151.
[16] S. Kaiser, S.G. Verza, R.C. Moraes, V. Pittol, E.M.C. Pe&;#241;aloza, C. Pavei, G.G. Ortega, Extraction optimization of polyphenols, oxindole alkaloids and quinovic acid glycosides from cat''s claw bark by Box–Behnken design, Ind. Crops. Products., 48 (2013) 153-161.
[17] C. Pavei, S. Kaiser, S.G. Verza, G.L. Borre, G.G. Ortega, HPLC-PDA method for quinovic acid glycosides assay in Cat''s claw (Uncaria tomentosa) associated with UPLC/Q-TOF–MS analysis, J. Pharm. Biomed. Anal., 62 (2012) 250-257.
[18] H.M. Kingston, &; Jassie, L. B, Introduction to microwave sample preparation: theory and practice, A.C.S., (1988).
[19] C.S. Eskilsson, E. Bj&;#246;rklund, Analytical-scale microwave-assisted extraction, J. Chromatogr. A, 902 (2000) 227-250.
[20] Y. Lu, W. Ma, R. Hu, X. Dai, Y. Pan, Ionic liquid-based microwave-assisted extraction of phenolic alkaloids from the medicinal plant Nelumbo nucifera Gaertn, J. Chromatogr. A, 1208 (2008) 42-46.
[21] W. Ma, Y. Lu, R. Hu, J. Chen, Z. Zhang, Y. Pan, Application of ionic liquids based microwave-assisted extraction of three alkaloids N-nornuciferine, O-nornuciferine, and nuciferine from lotus leaf, Talanta, 80 (2010) 1292-1297.
[22] S. Keskin, D. Kayrak-Talay, U. Akman, &;#214;. Horta&;#231;su, A review of ionic liquids towards supercritical fluid applications, J. Supercrit. Fluids, 43 (2007) 150-180.
[23] P.T. Anastas, J.B. Zimmerman, Design through the 12 principles of green engineering, Environ. Sci. Technol., 37 (2003) 94a-101a.
[24] T.D. Ho, C. Zhang, L.W. Hantao, J.L. Anderson, Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives, Anal. Chem., 86 (2013) 262-285.
[25] K.R. Seddon, A. Stark, M.-J. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure Appl. Chem., 72 (2000) 2275-2287.
[26] P. Wasserscheid, W. Keim, Ionic liquids-new" solutions" for transition metal catalysis, Angew. Chem., 39 (2000) 3772-3789.
[27] L. Chen, Z. Liu, P. Sun, W. Huo, Formulation of a fuel spray SMD model at atmospheric pressure using Design of Experiments (DoE), Fuel, 153 (2015) 355-360.
[28] R.C. Leme, A.P. Paiva, P.E. Steele Santos, P.P. Balestrassi, L.d.L. Galv&;#227;o, Design of experiments applied to environmental variables analysis in electricity utilities efficiency: The Brazilian case, Energy Econ., 45 (2014) 111-119.
[29] &;#63969;輝煌, 田口方法:品質設計的原&;#63972;與實務, 2011.
[30] P.J. Oles, A. Yankovich., Taguchi design experiments for optimizing the performance of a gas chromatograph and a mass selective detector, LC-GC, 7 (1989).
[31] A.S. Hedayat, N.J.A. Sloane, J. Stufken, Orthogonal arrays: theory and applications, Springer Science &; Business Media, 2012.
[32] C.L.-N. Vo, C. Park, B.-J. Lee, Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs, Eur. J. Pharm. Biopharm., 85 (2013) 799-813.
[33] D.Q. Craig, The mechanisms of drug release from solid dispersions in water-soluble polymers, Int. J. Pharm., 231 (2002) 131-144.
[34] S. Okonogi, T. Oguchi, E. Yonemochi, S. Puttipipatkhachorn, K. Yamamoto, Improved dissolution of ofloxacin via solid dispersion, Int. J. Pharm., 156 (1997) 175-180.
[35] N.G. Sahoo, A. Abbas, Z. Judeh, C.M. Li, K.H. Yuen, Solubility enhancement of a poorly water&;#8208;soluble anti&;#8208;malarial drug: Experimental design and use of a modified multifluid nozzle pilot spray drier, J. Pharm. Sci., 98 (2009) 281-296.
[36] S.W. Jang, M.J. Kang, Improved oral absorption and chemical stability of everolimus via preparation of solid dispersion using solvent wetting technique, Int. J. Pharm., 473 (2014) 187-193.
[37] J.O. Eloy, J.M. Marchetti, Solid dispersions containing ursolic acid in Poloxamer 407 and PEG 6000: A comparative study of fusion and solvent methods, Powder Technol., 253 (2014) 98-106.
[38] M.M. Mehanna, A.M. Motawaa, M.W. Samaha, In sight into tadalafil–block copolymer binary solid dispersion: mechanistic investigation of dissolution enhancement, Int. J. Pharm., 402 (2010) 78-88.
[39] F. Tajarobi, A. Larsson, H. Matic, S. Abrahms&;#233;n-Alami, The influence of crystallization inhibition of HPMC and HPMCAS on model substance dissolution and release in swellable matrix tablets, Eur. J. Pharm. Biopharm., 78 (2011) 125-133.
[40] Y. Zhao, T. Xin, T. Ye, X. Yang, W. Pan, Solid dispersion in the development of a nimodipine delayed-release tablet formulation, Asian J. Pharm. Sci., 9 (2014) 35-41.
[41] R. Moustafine, V. Kemenova, G. Van den Mooter, Characteristics of interpolyelectrolyte complexes of Eudragit E 100 with sodium alginate, Int. J. Pharm., 294 (2005) 113-120.
[42] F.Y. Du, X.H. Xiao, X.J. Luo, G.K. Li, Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicinal plants, Talanta, 78 (2009) 1177-1184.
[43] T. Wu, J. Yan, R. Liu, M.F. Marcone, H.A. Aisa, R. Tsao, Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design, Food Chem., 133 (2012) 1292-1298.
[44] S.-C. Wang, H.-J. Liao, W.-C. Lee, C.-M. Huang, T.-H. Tsai, Using orthogonal array to obtain gradient liquid chromatography conditions of enhanced peak intensity to determine geniposide and genipin with electrospray tandem mass spectrometry, J. Chromatogr. A, 1212 (2008) 68-75.
[45] J. Piscoya, Z. Rodriguez, S. Bustamante, N. Okuhama, M. Miller, M. Sandoval, Efficacy and safety of freeze-dried cat''s claw in osteoarthritis of the knee: mechanisms of action of the species Uncaria guianensis, Inflamm. Research, 50 (2001) 442-448.
[46] M. Sandoval, R.M. Charbonnet, N.N. Okuhama, J. Roberts, Z. Krenova, A.M. Trentacosti, M.J. Miller, Cat’s claw inhibits TNFα production and scavenges free radicals: role in cytoprotection, Free Radical Bio. Med., 29 (2000) 71-78.
[47] S. Setthacheewakul, S. Mahattanadul, N. Phadoongsombut, W. Pichayakorn, R. Wiwattanapatapee, Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats, Eur. J. Pharm. Biopharm., 76 (2010) 475-485.
[48] M.M. Mehanna, A.M. Motawaa, M.W. Samaha, In sight into tadalafil - block copolymer binary solid dispersion: Mechanistic investigation of dissolution enhancement, Int.J. Pharm., 402 (2010) 78-88.
[49] D.J. Crail, A. Tunis, R. Dansereau, Is the use of a 200 ml vessel suitable for dissolution of low dose drug products?, Int. J. Pharm., 269 (2004) 203-209.
[50] A.Y. Waddad, S. Abbad, F. Yu, W.L. Munyendo, J. Wang, H. Lv, J. Zhou, Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants, Int. J. Pharm., 456 (2013) 446-458.
[51] E.K. Kim, E.K. Jeong, S.B. Han, J.H. Jung, J. Hong, HPLC separation of isoquinoline alkaloids for quality control of Corydalis species, Bull. Korean Chem. Soc, 32 (2011) 3597.
[52] H. Maulding, M. Zoglio, Physical chemistry of ergot alkaloids and derivatives I: Ionization constants of several medicinally active bases, J. Pharm. Sci., 59 (1970) 700-701.
[53] P. Montoro, V. Carbone, J. de Dioz Zuniga Quiroz, F. De Simone, C. Pizza, Identi&;#64257;cation and quanti&;#64257;cation of components in extracts of Uncaria tomentosa by HPLC&;#8208;ES/MS, Phytochem. Anal., 15 (2004) 55-64.
[54] S. Shah, S. Maddineni, J. Lu, M.A. Repka, Melt extrusion with poorly soluble drugs, Int. J. Pharm., 453 (2013) 233-252.
[55] H.D. Waard, W.L. Hinrichs, M.R. Visser, C. Bologna, H.W. Frijlink, Unexpected differences in dissolution behavior of tablets prepared from solid dispersions with a surfactant physically mixed or incorporated, Int. J. Pharm., 349 (2008) 66-73.
[56] J. Moes, S. Koolen, A. Huitema, J. Schellens, J. Beijnen, B. Nuijen, Pharmaceutical development and preliminary clinical testing of an oral solid dispersion formulation of docetaxel (ModraDoc001), Int. J. Pharm., 420 (2011) 244-250.
[57] D. Singh, K. Pathak, Hydrogen bond replacement—Unearthing a novel molecular mechanism of surface solid dispersion for enhanced solubility of a drug for veterinary use, Int. J. Pharm., 441 (2013) 99-110.
[58] Z. Weiszh&;#225;r, J. Cz&;#250;cz, C. R&;#233;v&;#233;sz, L. Rosivall, J. Szebeni, Z. Rozsnyay, Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor-EL, Tween-80 and Tween-20, Eur. J. Pharm. Sci., 45 (2012) 492-498.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top