跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 12:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘新承
研究生(外文):Hsin-Cheng Pan
論文名稱:Dexmedetomidine恆定速率輸注對於麻醉中犬隻心血管影響
論文名稱(外文):Cardiovascular effects of dexmedetomidine constant rate infusion in anesthetized dogs
指導教授:王咸棋陳冠升
指導教授(外文):Hsien-Chi WangKuan-Sheng Chen
口試委員:鍾承澍
口試委員(外文):Cheng-Shu Chung
口試日期:2018-07-18
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫學系所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:56
中文關鍵詞:dexmedetomidine恆定速率輸注心輸出量心臟收縮及舒張功能
外文關鍵詞:dexmedetomidinecontinuous rate infusiondogscardiac outputgeneral systolic and diastolic cardiac function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:610
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Dexmedetomidine具有良好的鎮靜、抗焦慮、止痛和減少吸入性麻醉劑用量的效果,因此常被用於麻醉前給藥和術中止痛。然而,Dexmedetomidine會造成顯著的血液動力學變化,包括心律不整、持續性的心搏徐緩和全身血管阻力增加。目前很少研究提及關於低劑量的Dexmedetomidine恆定速率輸注對於犬隻心臟功能的改變。本研究總共納入八隻健康犬隻,麻醉的流程先以propofol導入麻醉、isoflurane維持麻醉,之後由頭靜脈給予1 μg kg-1 Dexmedetomidine做為初始劑量,接著給予1 μg kg-1 hr-1 Dexmedetomidine。分別在給予恆定速率輸注Dexmedetomidine前(紀錄為基礎值)和給予後的第20和60分鐘 (紀錄為T20和T60),紀錄心跳、呼吸速率、血壓和進行心臟超音波的檢查。與基礎值相比,T20和T60時心跳顯著下降而血壓顯著上升,左心室收縮期的內徑和左心房直徑顯著增加。在T60時,E波和S波的速率顯著下降,最大肺動脈流速在T20和T60皆顯著下降。儘管如此,整體心臟收縮及舒張功能指標,包括心輸出量、縮短分率、射血分率、E / A和E / E'在給予Dexmedetomidine後與給予前相比皆沒有顯著差異,我們也藉由彩色都卜勒成像發現給予Dexmedetomidine後,出現瓣膜逆流。整題而言,儘管在健康犬隻給予Dexmedetomidine恆定速率輸注會造成一些數值的改變,然而這些改變並不影響心輸出量和整體心臟收縮及舒張功能。1 μg kg-1 hr-1 Dexmedetomidine是可以安全用於isoflurane麻醉下的健康犬隻,甚至也可能適用於擁有無臨床症狀心臟病的犬隻。
Dexmedetomidine is used as a premedication and intraoperative analgesia, because it can provide good sedative, anxiolytic, analgesic effects and a reduced inhaled anesthetics requirement. Dexmedetomidine causes significant changes of haemodynamics, including arrhythmias, sustained bradycardia, increased systemic vascular resistance. There are little liiteratures mention about the cardiac function change of low dosage continuous rate infusion (CRI) of dexmedetomidine in dogs. In present study, anaesthetic protocol of eight healthy dogs were induction with propofol and maintenance with isoflurane. A loading dose of 1 μg kg-1 dexmedetomidine was given, immediately followed by a CRI of 1 μg kg-1 hr-1. Heart rate, respiratory rate, blood pressure and the parameters of echocardiography were recorded before administration of dexmedetomidine at baseline, at 20 and 60 minutes (recorded as T20 and T60) after dexmedetomidine CRI. Heart rate decreased and blood pressure increased at T20 and T60 compared with baseline. The left ventricular internal diameter in systole and the left atrium diameter increased after dexmedetomidine CRI. E velocity(m/s), S’ velocity(m/s) decreased at T60, and maximal pulmonary velocity(m/s) decreased at T20 and T60. There was no significant difference in general systolic and diastolic function indicator, including cardiac output, fractional shortening, ejection fraction, E/A and E/E', at T20 and T60 compared with baseline. The appearance of valvular regurgitation was identified by color Doppler imaging. In conclusion, a little changes of parameters were found after administered dexmedetomidine CRI in healthy dogs. However, these changes does not impair cardiac output, general systolic and diastolic cardiac function. It is appropriate to use 1 μg kg-1 hr-1 dexmedetomidine in healthy dogs anesthetized by isoflurane, and also may be used in dogs with asymptomatic heart disease.
致謝 i
摘要 ii
Abstract iii
Contents v
Figure contents vii
Table contents viii
Abbreviations ix
Chapter 1 Introduction 1
Chapter 2 Literature Reviews 3
2.1 α2-Adrenergic receptor 3
2.1.1 Classification of α2 receptor subtypes 3
2.1.1.1 α2A-adrenergic receptor 3
2.1.1.2 α2B-adrenergic receptor 5
2.1.1.3 α2C-adrenergic receptor 6
2.1.2 Dexmedetomidine 7
2.1.2.1 Pharmacokinetics 7
2.1.2.2 Pharmacodynamics 8
2.1.2.3 Cardiopulmonary 9
2.1.2.4 Other effects 10
2.2 Atipamezole 11
2.3 Echocardiographic evaluation of the effects of α2 agonists 12
Chapter 3 Material and Methods 13
3.1 Animals 13
3.2 Anesthesia Protocol 13
3.3 Echocardiography 15
3.4 M-mode echocardiographic measurements 15
3.5 Two-dimensional echocardiographic measurements 16
3.6 Doppler echocardiographic measurements 16
3.7 Statistical analysis 17
Chapter 4 Results 24
4.1 Clinical exam variables and blood pressure 24
4.2 M-mode echocardiographic measurements 24
4.3 2D echocardiographic measurements 24
4.4 Doppler echocardiographic measurements 25
4.5 Cardiac output values 25
4.6 Presence of valvular regurgitation and smoke 26
Chapter 5 Discussion 33
5.1 Cardiovascular and respiratory effect 33
5.2 Diastolic function of left ventricle 35
5.3 Systolic function of left ventricle 37
5.4 Maximal aortic and pulmonary velocities 38
5.5 Valvular regurgitation and smoke 40
5.6 Limitations 41
5.7 Conclusion 42
References 43
Aghajanian G, VanderMaelen C (1982) alpha 2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science 215, 1394-1396.
Altman JD, Trendelenburg AU, MacMillan L et al. (1999) Abnormal regulation of the sympathetic nervous system in α2A-adrenergic receptor knockout mice. Mol Pharmacol 56, 154-161.
Appleton CP (1991) Influence of incremental changes in heart rate on mitral flow velocity: assessment in lightly sedated, conscious dogs. J Am Coll Cardiol 17, 227-236.
Bavegems V, Duchateau L, Sys SU et al. (2007) Echocardiographic reference values in whippets. Vet Radiol Ultrasound 48, 230-238.
Berridge C, Arnsten A, Foote S (1993) Noradrenergic modulation of cognitive function: clinical implications of anatomical, electrophysiological and behavioural studies in animal models. Psychol Med 23, 557-564.
Bloor BC, Frankland M, Alper G et al. (1992) Hemodynamic and sedative effects of dexmedetomidine in dog. J Pharmacol Exp Ther 263, 690-697.
Boon JA (2011) Veterinary Echocardiography. John Wiley & Sons.
Brede M, Wiesmann F, Jahns R et al. (2002) Feedback inhibition of catecholamine release by two different α2-adrenoceptor subtypes prevents progression of heart failure. Circulation 106, 2491-2496.
Brioschi FA, Gioeni D, Jacchetti A et al. (2018) Effect of metoclopramide on nausea and emesis in dogs premedicated with morphine and dexmedetomidine. Vet Anaesth Analg 45, 190-194.
Bylund DB (1988) Sub types of α2-adrenoceptors: Pharmacological and molecular biological evidence converg. Trends Pharmacol Sci 9, 356-361.
Chen W, Song B, Marvizón JCG (2008) Inhibition of opioid release in the rat spinal cord by α2C adrenergic receptors. Neuropharmacology 54, 944-953.
Chotani MA, Flavahan S, Mitra S et al. (2000) Silent α2C-adrenergic receptors enable cold-induced vasoconstriction in cutaneous arteries. Am J Physiol Heart Circ Physiol 278, H1075-H1083.
Clark T (1998) Selectivity of atipamezole, yohimbine and tolazoline for alpha-2 adrenergic receptor subtypes: implications for clinical reversal of alpha-2 adrenergic receptor mediated sedation in sheep. J Vet Pharmacol Ther 21, 342-347.
Congdon JM, Marquez M, Niyom S et al. (2011) Evaluation of the sedative and cardiovascular effects of intramuscular administration of dexmedetomidine with and without concurrent atropine administration in dogs. J Am Vet Med Assoc 239, 81-89.
Coughlan MG, Lee JG, Bosnjak ZJ et al. (1992) Direct coronary and cerebral vascular responses to dexmedetomidine. Significance of endogenous nitric oxide synthesis. Anesthesiology 77, 998-1006.
Daneshvar D, Wei J, Tolstrup K et al. (2010) Diastolic dysfunction: improved understanding using emerging imaging techniques. Am Heart J 160, 394-404.
Docherty JR (1998) Subtypes of functional α1-and α2-adrenoceptors. Eur J Pharmacol 361, 1-15.
Drees R, Johnson RA, Stepien RL et al. (2015) Effects of two different anesthetic protocols on cardiac flow measured by two dimensional phase contrast magnetic resonance imaging. Vet Radiol Ultrasound 56, 168-175.
Duka I, Gavras I, Johns C et al. (2000) Role of the postsynaptic α2-adrenergic receptor subtypes in catecholamine-induced vasoconstriction. Gen Pharmacol 34, 101-106.
Duke-Novakovski T, Seymour C (2016) BSAVA Manual of Canine and Feline Anaesthesia and Analgesia. Wiley.
Ewing K, Mohammed H, Scarlett J et al. (1993) Reduction of isoflurane anesthetic requirement by medetomidine and its restoration by atipamezole in dogs. Am J Vet Res 54, 294-299.
Flacke WE, Flacke JW, Bloor BC et al. (1993) Effects of dexmedetomidine on systemic and coronary hemodynamics in the anesthetized dog. J Cardiothorac Vasc Anesth 7, 41-49.
Gáspár R, Gál A, Gálik M et al. (2007) Different roles of α2-adrenoceptor subtypes in non-pregnant and late-pregnant uterine contractility in vitro in the rat. Neurochem Int 51, 311-318.
Galiuto L, Ignone G, DeMaria AN (1998) Contraction and relaxation velocities of the normal left ventricle using pulsed-wave tissue Doppler echocardiography. Am J Cardiol 81, 609-614.
Gavin K, Colgan M-P, Moore D et al. (1997) α2C-adrenoceptors mediate contractile responses to noradrenaline in the human saphenous vein. Naunyn Schmiedebergs Arch Pharmacol 355, 406-411.
Gavras I, Manolis AJ, Gavras H (2001) The α2-adrenergic receptors in hypertension and heart failure: experimental and clinical studies. J Hypertens 19, 2115-2124.
Gertler R, Brown HC, Mitchell DH et al. (2001) Dexmedetomidine: a novel sedative-analgesic agent. Proc (Bayl Univ Med Cent) 14, 13-21.
Gómez‐Villamandos R, Palacios C, Benitez A et al. (2006) Dexmedetomidine or medetomidine premedication before propofol–desflurane anaesthesia in dogs. J Vet Pharmacol Ther 29, 157-163.
Grimm KA, Lamont LA, Tranquilli WJ et al. (2015) Veterinary Anesthesia and Analgesia: The Fifth Edition of Lumb and Jones. Wiley.
Grimsrud KN, Mama KR, Steffey EP et al. (2012) Pharmacokinetics and pharmacodynamics of intravenous medetomidine in the horse. Vet Anaesth Analg 39, 38-48.
Guo TZ, Davies FM, Kingery WS et al. (1999) Nitrous oxide produces antinociceptive response via α2band/or α2cadrenoceptor subtypes in mice. Anesthesiology 90, 470-476.
Gyires K, Zádori ZS, Török T et al. (2009) α2-Adrenoceptor subtypes-mediated physiological, pharmacological actions. Neurochem Int 55, 447-453.
Haapalinna A, Sirviö J, MacDonald E et al. (2000) The effects of a specific α2-adrenoceptor antagonist, atipamezole, on cognitive performance and brain neurochemistry in aged Fisher 344 rats. Eur J Pharmacol 387, 141-150.
Haapalinna A, Viitamaa T, MacDonald E et al. (1997) Evaluation of the effects of a specific α2-adrenoceptor antagonist, atipamezole, on α1-and α2-adrenoceptor subtype binding, brain neurochemistry and behaviour in comparison with yohimbine. Naunyn Schmiedebergs Arch Pharmacol 356, 570-582.
Handy DE, Johns C, Bresnahan MR et al. (1998) Expression of α2-adrenergic receptors in normal and atherosclerotic rabbit aorta. Hypertension 32, 311-317.
Hansson K, Häggström J, Kvart C et al. (2002) Left atrial to aortic root indices using two‐dimensional and M‐mode echocardiography in cavalier King Charles spaniels with and without left atrial enlargement. Vet Radiol Ultrasound 43, 568-575.
Hein L, Altman JD, Kobilka BK (1999) Two functionally distinct α 2-adrenergic receptors regulate sympathetic neurotransmission. Nature 402, 181-184.
Hein L, Kobilka B (1995) Adrenergic receptor signal transduction and regulation. Neuropharmacology 34, 357-366.
Hieble JP, Ruffolo RR (1996) Subclassification and nomenclature of α1-and α2-adrenoceptors. Prog Drug Res 47, 81-130.
Ho CY, Solomon SD (2006) A clinician’s guide to tissue Doppler imaging. Circulation 113, e396-e398.
Hori Y, Sato S, Hoshi F et al. (2007) Assessment of longitudinal tissue Doppler imaging of the left ventricular septum and free wall as an indicator of left ventricular systolic function in dogs. Am J Vet Res 68, 1051-1057.
Hunter J, Fontana D, Hedley L et al. (1997) Assessment of the role of α2‐adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br J Pharmacol 122, 1339-1344.
Jalanka H (1989) The use of medetomidine, medetomidine-ketamine combinations and atipamezole at Helsinki Zoo--a review of 240 cases. Acta Vet Scand Suppl 85, 193-197.
Jedruch J, Gajewski Z, Ratajska-Michalczak K (1989) Uterine motor responses to an alpha 2-adrenergic agonist medetomidine hydrochloride in the bitches during the end of gestation and the post-partum period. Acta Vet Scand Suppl 85, 129-134.
Kasner M, Westermann D, Steendijk P et al. (2007) Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation 116, 637-647.
Keegan RD, Greene SA (1993) Cardiovascular Effects of a Continuous Two‐Hour Propofol Infusion in Dogs Comparison With Isoflurane Anesthesia. Vet Surg 22, 537-543.
Kellihan HB, Stepien RL, Hassen KM et al. (2015) Sedative and echocardiographic effects of dexmedetomidine combined with butorphanol in healthy dogs. J Vet Cardiol 17, 282-292.
Kuusela E, Raekallio M, Anttila M et al. (2000) Clinical effects and pharmacokinetics of medetomidine and its enantiomers in dogs. J Vet Pharmacol Ther 23, 15-20.
Kuusela E, Raekallio M, Hietanen H et al. (2002) 24-hour Holter-monitoring in the perianaesthetic period in dogs premedicated with dexmedetomidine. Vet J 164, 235-239.
Kuusela E, Raekallio M, Väisänen M et al. (2001a) Comparison of medetomidine and dexmedetomidine as premedicants in dogs undergoing propofol-isoflurane anesthesia. Am J Vet Res 62, 1073-1080.
Kuusela E, Vainio O, Kaistinen A et al. (2001b) Sedative, analgesic, and cardiovascular effects of levomedetomidine alone and in combination with dexmedetomidine in dogs. Am J Vet Res 62, 616-621.
Lakhlani PP, MacMillan LB, Guo TZ et al. (1997) Substitution of a mutant α2a-adrenergic receptor via “hit and run” gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc Natl Acad Sci U S A 94, 9950-9955.
Lamont LA, Bulmer BJ, Sisson DD et al. (2002) Doppler echocardiographic effects of medetomidine on dynamic left ventricular outflow tract obstruction in cats. J Am Vet Med Assoc 221, 1276-1281.
Lawrence C, Prinzen F, De Lange S (1996a) The effect of dexmedetomidine on nutrient organ blood flow. Anesth Analg 83, 1160-1165.
Lawrence C, Prinzen F, De Lange S (1996b) The effect of dexmedetomidine on the balance of myocardial energy requirement and oxygen supply and demand. Anesth Analg 82, 544-550.
Lee S, Choi Y, Hong G et al. (2015) Echocardiographic evaluation of the effects of dexmedetomidine on cardiac function during total intravenous anaesthesia. Anaesthesia 70, 1052-1059.
Lee T-M, Chou N-K, Su S-F et al. (1996) Left atrial spontaneous echo contrast in asymptomatic patients with a mechanical valve prosthesis. Ann Thorac Surg 62, 1790-1795.
Lemke KA (2004) Perioperative use of selective alpha-2 agonists and antagonists in small animals. Can Vet J 45, 475-480.
Lin GY, Robben JH, Murrell JC et al. (2008) Dexmedetomidine constant rate infusion for 24 hours during and after propofol or isoflurane anaesthesia in dogs. Vet Anaesth Analg 35, 141-153.
Link RE, Desai K, Hein L et al. (1996) Cardiovascular regulation in mice lacking α2-adrenergic receptor subtypes b and c. Science 273, 803-805.
Lipscombe D, Kongsamut S, Tsien RW (1989) α-Adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium-channel gating. Nature 340, 639-642.
Long ER, Macdonald DD, Smith SL et al. (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manage 19, 81-97.
Lopes PCF, Sousa MG, Camacho AA et al. (2010) Comparison between two methods for cardiac output measurement in propofol‐anesthetized dogs: thermodilution and Doppler. Vet Anaesth Analg 37, 401-408.
MacDonald E, Scheinin M (1995) Distribution and pharmacology of alpha 2-adrenoceptors in the central nervous system. J Physiol Pharmacol 46, 241-258.
MacMillan LB, Hein L, Smith MS et al. (1996) Central hypotensive effects of the α2A-adrenergic receptor subtype. Science 273, 801-803.
Makaritsis KP, Handy DE, Johns C et al. (1999) Role of the α2B-adrenergic receptor in the development of salt-induced hypertension. Hypertension 33, 14-17.
Makaritsis KP, Johns C, Gavras I et al. (2000) Role of α2-adrenergic receptor subtypes in the acute hypertensive response to hypertonic saline infusion in anephric mice. Hypertension 35, 609-613.
Marshall M (2004) Capnography in dogs. Compendium 26, 761-777.
McGowan JH, Cleland JG (2003) Reliability of reporting left ventricular systolic function by echocardiography: a systematic review of 3 methods. Am Heart J 146, 388-397.
Merin RG, Bernard J-M, Doursout M-F et al. (1991) Comparison of the effects of isoflurane and desflurane on cardiovascular dynamics and regional blood flow in the chronically instrumented dog. Anesthesiology 74, 568-574.
Morrison P, Etropolski M, Bachand RT (1999) Dose-ranging study to evaluate the effects of dexmedetomidine on sedation. Indian J Anaesth 59, 359-364.
Murrell JC, Hellebrekers LJ (2005) Medetomidine and dexmedetomidine: a review of cardiovascular effects and antinociceptive properties in the dog. Vet Anaesth Analg 32, 117-127.
Nagueh SF, Smiseth OA, Appleton CP et al. (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29, 277-314.
Nicholas AP, Pieribone V, Hökfelt T (1993) Distributions of mRNAs for alpha‐2 adrenergic receptor subtypes in rat brain: An in situ hybridization study. J Comp Neurol 328, 575-594.
Nishimura RA, Abel MD, Hatle LK et al. (1989) Assessment of diastolic function of the heart: background and current applications of Doppler echocardiography. Part II. Clinical studies. Mayo Clin Proc 64, 181-204.
Ommen SR, Nishimura R, Appleton CP et al. (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102, 1788-1794.
Pagel P, Grossman W, Haering J et al. (1993) Left ventricular diastolic function in the normal and diseased heart. Perspectives for the anesthesiologist (1). Anesthesiology 79, 836-854.
Pascoe PJ (2015) The cardiopulmonary effects of dexmedetomidine infusions in dogs during isoflurane anesthesia. Vet Anaesth Analg 42, 360-368.
Pascoe PJ, Raekallio M, Kuusela E et al. (2006) Changes in the minimum alveolar concentration of isoflurane and some cardiopulmonary measurements during three continuous infusion rates of dexmedetomidine in dogs. Vet Anaesth Analg 33, 97-103.
Philipp M, Brede M, Hein L (2002) Physiological significance of α2-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol 283, R287-R295.
Phillips JK, Vidovic M, Hill CE (1997) Variation in mRNA expression of alpha-adrenergic, neurokinin and muscarinic receptors amongst four arteries of the rat. J Auton Nerv Syst 62, 85-93.
Pishbin E, Ahmadi GD, Sharifi MD et al. (2015) The correlation between end-tidal carbon dioxide and arterial blood gas parameters in patients evaluated for metabolic acid-base disorders. Electron Physician 7, 1095-1101.
Požgajová M, Sachs UJ, Hein L et al. (2006) Reduced thrombus stability in mice lacking the α2A-adrenergic receptor. Blood 108, 510-514.
Puoliväli J, Björklund M, Holmberg M et al. (2002) Alpha2C-adrenoceptor mediated regulation of cortical EEG arousal. Neuropharmacology 43, 1305-1312.
Pypendop BH, Barter LS, Stanley SD et al. (2011) Hemodynamic effects of dexmedetomidine in isoflurane‐anesthetized cats. Vet Anaesth Analg 38, 555-567.
Pypendop BH, Verstegen JP (1998) Hemodynamic effects of medetomidine in the dog: a dose titration study. Vet Surg 27, 612-622.
Raekallio MR, Kuusela EK, Lehtinen ME et al. (2005) Effects of exercise-induced stress and dexamethasone on plasma hormone and glucose concentrations and sedation in dogs treated with dexmedetomidine. Am J Vet Res 66, 260-265.
Rand J, Reynolds W, Priest J (1996) Echocardiographic evaluation of the effects of medetomidine and xylazine in dogs. Aust Vet J 73, 41-44.
Ranheim B, Horsberg T, Søli N et al. (2000) The effects of medetomidine and its reversal with atipamezole on plasma glucose, cortisol and noradrenaline in cattle and sheep. J Vet Pharmacol Ther 23, 379-387.
Restitutti F, Raekallio M, Vainionpää M et al. (2012) Plasma glucose, insulin, free fatty acids, lactate and cortisol concentrations in dexmedetomidine-sedated dogs with or without MK-467: a peripheral α-2 adrenoceptor antagonist. Vet J 193, 481-485.
Roekaerts PM, Prinzen FW, de Lange S (1996) Coronary vascular effects of dexmedetomidine during reactive hyperemia in the anesthetized dog. J Cardiothorac Vasc Anesth 10, 619-626.
Romero T, Covell J, Friedman WF (1972) A comparison of pressure-volume relations of the fetal, newborn, and adult heart. Am J Physiol 222, 1285-1290.
Saleh N, Aoki M, Shimada T et al. (2005) Renal effects of medetomidine in isoflurane-anesthetized dogs with special reference to its diuretic action. J Vet Med Sci 67, 461-465.
Sallinen J, Haapalinna A, Viitamaa T et al. (1998) Adrenergic α2C-receptors modulate the acoustic startle reflex, prepulse inhibition, and aggression in mice. J Neurosci 18, 3035-3042.
Sallinen J, Link RE, Haapalinna A et al. (1997) Genetic alteration of α2C-adrenoceptor expression in mice: influence on locomotor, hypothermic, and neurochemical effects of dexmedetomidine, a subtype-nonselective α2-adrenoceptor agonist. Mol Pharmacol 51, 36-46.
Salonen M, Reid K, Maze M (1992) Synergistic interaction between alpha 2-adrenergic agonists and benzodiazepines in rats. Anesthesiology 76, 1004-1011.
Saponaro V, Crovace A, De Marzo L et al. (2013) Echocardiographic evaluation of the cardiovascular effects of medetomidine, acepromazine and their combination in healthy dogs. Res Vet Sci 95, 687-692.
Savola J-M, Virtanen R (1991) Central α2-adrenoceptors are highly stereoselective for dexmedetomidine, the dextro enantiomer of medetomidine. Eur J Pharmacol 195, 193-199.
Sawamura S, Kingery WS, Davies MF et al. (2000) Antinociceptive action of nitrous oxide is mediated by stimulation of noradrenergic neurons in the brainstem and activation of α2B adrenoceptors. J Neurosci 20, 9242-9251.
Scheinin H, Karhuvaara S, Olkkola KT et al. (1992) Pharmacodynamics and pharmacokinetics of intramuscular dexmedetomidine. Clin Pharmacol Ther 52, 537-546.
Scheinin M, Lomasney JW, Hayden-Hixson DM et al. (1994) Distribution of α2-adrenergic receptor subtype gene expression in rat brain. Brain Res Mol Brain Res 21, 133-149.
Scheinin M, Sallinen J, Haapalinna A (2001) Evaluation of the α2C-adrenoceptor as a neuropsychiatric drug target: studies in transgenic mouse models. Life Sci 68, 2277-2285.
Schmeling WT, Kampine JP, Roerig DL et al. (1991) The effects of the stereoisomers of the alpha 2-adrenergic agonist medetomidine on systemic and coronary hemodynamics in conscious dogs. Anesthesiology 75, 499-511.
Schober KE, Fuentes VL (2001) Effects of age, body weight, and heart rate on transmitral and pulmonary venous flow in clinically normal dogs. Am J Vet Res 62, 1447-1454.
Schwartz D, Jones W, Hedden K et al. (1999) Molecular and pharmacological characterization of the canine brainstem alpha-2A adrenergic receptor. J Vet Pharmacol Ther 22, 380-386.
Sinclair MD (2003) A review of the physiological effects of α2-agonists related to the clinical use of medetomidine in small animal practice. Can Vet J 44, 885-897.
Snapir A, Heinonen P, Tuomainen T-P et al. (2001) An insertion/deletion polymorphism in the α2B-adrenergic receptor gene is a novel genetic risk factor for acute coronary events. J Am Coll Cardiol 37, 1516-1522.
Sousa MG, Carareto R, De-Nardi AB et al. (2008) Effects of isoflurane on echocardiographic parameters in healthy dogs. Vet Anaesth Analg 35, 185-190.
Stenberg D (1989) Physiological role of alpha 2-adrenoceptors in the regulation of vigilance and pain: effect of medetomidine. Acta Vet Scand Suppl 85, 21-28.
Szot P, Lester M, Laughlin M et al. (2004) The anticonvulsant and proconvulsant effects of α2-adrenoreceptor agonists are mediated by distinct populations of α2A-adrenoreceptors. Neuroscience 126, 795-803.
Taghizadieh A, Pouraghaei M, Moharamzadeh P et al. (2016) Comparison of end-tidal carbon dioxide and arterial blood bicarbonate levels in patients with metabolic acidosis referred to emergency medicine. J Cardiovasc Thorac Res 8, 98-101.
Talukder MH, Hikasa Y (2009) Diuretic effects of medetomidine compared with xylazine in healthy dogs. Can J Vet Res 73, 224-236.
Thorstensen A, Dalen H, Amundsen BH et al. (2011) Peak systolic velocity indices are more sensitive than end-systolic indices in detecting contraction changes assessed by echocardiography in young healthy humans. Eur J Echocardiogr 12, 924-930.
Trendelenburg A-U, Philipp M, Meyer A et al. (2003) All three α 2-adrenoceptor types serve as autoreceptors in postganglionic sympathetic neurons. Naunyn Schmiedebergs Arch Pharmacol 368, 504-512.
Uilenreef JJ, Murrell JC, McKusick BC et al. (2008) Dexmedetomidine continuous rate infusion during isoflurane anaesthesia in canine surgical patients. Vet Anaesth Analg 35, 1-12.
Vainio O, Vähä‐Vahe T (1990) Reversal of medetomidine sedation by atipamezole in dogs. J Vet Pharmacol Ther 13, 15-22.
Valtolina C, Robben JH, Uilenreef J et al. (2009) Clinical evaluation of the efficacy and safety of a constant rate infusion of dexmedetomidine for postoperative pain management in dogs. Vet Anaesth Analg 36, 369-383.
Vastenburg MH, Boroffka SA, Schoemaker NJ (2004) Echocardiographic measurements in clinically healthy ferrets anesthetized with isoflurane. Vet Radiol Ultrasound 45, 228-232.
Virtanen R (1989) Pharmacological profiles of medetomidine and its antagonist, atipamezole. Acta Vet Scand Suppl 85, 29-37.
Wang HC, Hung CT, Lee WM et al. (2016) Effects of intravenous dexmedetomidine on cardiac characteristics measured using radiography and echocardiography in six healthy dogs. Vet Radiol Ultrasound 57, 8-15.
Wang X-F, Liu L, Cheng TO et al. (1992) The relationship between intracardiovascular smoke-like echo and erythrocyte rouleaux formation. Am Heart J 124, 961-965.
Xu H, Aibiki M, Seki K et al. (1998) Effects of dexmedetomidine, an α2-adrenoceptor agonist, on renal sympathetic nerve activity, blood pressure, heart rate and central venous pressure in urethane-anesthetized rabbits. J Auton Nerv Syst 71, 48-54.
Yamada T, Takeda J, Koyama K et al. (1994) Effects of sevoflurane, isoflurane, enflurane, and halothane on left ventricular diastolic performance in dogs. J Cardiothorac Vasc Anesth 8, 618-624.
Zhang C, Davies FM, Guo TZ et al. (1999) The analgesic action of nitrous oxide is dependent on the release of norepinephrine in the dorsal horn of the spinal cord. Anesthesiology 91, 1401-1407.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top