跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余明融
研究生(外文):YU, MING-JUNG
論文名稱:透過獎勵機制提升線上課程的完課率-以程式設計課程為例
論文名稱(外文):A Bonus-based Approach to the Improvement of MOOC Completion Rate
指導教授:鄭王駿鄭王駿引用關係
指導教授(外文):CHENG, WANG-JIUNN
口試委員:鄧姚文梁容輝
口試委員(外文):DENG,YAO-WUNLIANG, RUNG-HUEI
口試日期:2018-07-26
學位類別:碩士
校院名稱:實踐大學
系所名稱:資訊科技與管理學系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:33
中文關鍵詞:大規模開放模線上課程完課率學習參與力自主學習
外文關鍵詞:Massive Open Online Course/MOOCsCompletion RateStudent EngagementLearner Autonomy
相關次數:
  • 被引用被引用:5
  • 點閱點閱:769
  • 評分評分:
  • 下載下載:188
  • 收藏至我的研究室書目清單書目收藏:1
科技的蓬勃發展與行動裝置普及化,大規模開放線上課程(Massive Open Online Course/MOOC)的教學平台在近幾年快速崛起,利用無所不在的網際網路打破地域及時間的限制,使人們更便利取得知識。然而,低完課率(Low Completion Rate)為MOOC面臨最大的挑戰。依據統計,MOOC平台的平均完課率僅15%,顯現出學生無法持續參與線上課程(Student Engagement)。經研究指出,完成課堂的學生能依據課堂每周的影片順序學習、有著結構化的學習且於期末測驗前每周都按時繳交課後功課。單就觀看課程影片為單向接收內容,若能透過反覆複習課程內容、訓練邏輯思考及於論壇討論問題來練習作業,必能達到有效學習。但線上學習無類似傳統課堂授課老師的督促,無從得知其作業練習之學習過程是否有效。因此,本研究將實作一套線上課程獎勵系統追蹤學生的學習行為,並藉由分析其學習行為驗證學生是否為有效學習,再透過加分之正向獎勵機制,激發學生的學習動力,提升學生持續參與的誘因來改善完課率。
以大學程式能力檢定(Collegiate Programming Examination/CPE)的統計為例,參加檢定者皆為程式相關科系的學生,約有1/3的學生於程式檢定中未解出任何一題,也意味著通過程式設計課程學分不代表具有撰寫程式的能力。無論於傳統教學或線上教學,僅聽課是無法取得程式設計能力,重點在於學生是否有於課堂之外自主學習並練習撰寫程式。本研究於大一資料結構程式設計課程進行六次測驗,總測驗人數為111位學生,依作業題目是否為考古題分為兩組實驗對照組及實行於期末考試。獲得94%有效資料,經系統分析後,僅有29%學習者獲得獎勵。經比對實驗對照證明作業題目若為考古題,學生較易於網路取得答案,透過直接複製將答案貼上繳交,使學習過程無效。另外,本次於重修班期末考試實行,僅有46%學生獲得加分獎勵。

Due to the rapid development of technologies, MOOC (Massive Open Online Courses) have become more and more popular in recent years. It’s ubiquitous and restrictions breakthrough help people to obtain knowledge more conveniently. However, according to statistics, the average completion rate of the MOOC is amongst 15%, which shows that student engagement rate is very low. On the other hand, sustaining student engagement can arise completion rate. The online course of MOOC platform is mainly divided into two parts: one is the course content, and the other is the assignments or exercises. Students can acquire knowledge effectively if they are willing to practice their assignment by reviewing the course content repeatedly, which can train their logical thinking, and discussing problems with others at Internet forum. Nevertheless, unlike school, the MOOC platform does not have teachers to supervise students, we don't know whether if students are learning courses effectively through the online learning platforms or not. Therefore, this study is aimed to develop a bonus system for online courses which can track the student's learning process and analyze their learning behavior to check whether students are effective in learning online courses, and then stimulate their learning motivation through the bonus system to improve the completion rate.
According to CPE (Collegiate Programming Examination), all the examinees are coming from the Department of Information Engineering, and nearly third of the examinees can’t solve any questions on CPE. The student’s ability of Learner Autonomy is very important. The result shows that even if a student passes the CPE, it does not mean that the student has the ability to write a program. Therefore, whether students choose to study online or in school, their programing skills cannot be acquired by just attending the courses without practicing programming by themselves actively. This study conducted six tests in the programming design course of data structure in the freshman year. There are 111 students attending these tests. After systematic analysis, only 29% of the learners were rewarded with 94% of the valid data. It has been proved by comparative experiments that if the test questions are in some known archive, students are much easier to get the answers online. They may handing out the assignment by directly copying the answers from website, this brings out the ineffective learning process. In addition, only 46% of students were awarded points in the final exam of the restudy class.

第壹章 緒論 1
第貳章 文獻探討 2
第一節 大規模開放線上課程 2
第二節 MOOC的低完成率 2
第三節 學生參與 3
第四節 自主學習能力 4
第五節 大學程式能力檢定 4
第參章 研究方法 6
第一節 獎勵系統 6
A. 學生身分 6
B. 鍵盤側錄 7
C. 歷史瀏覽紀錄 7
D. 分數計算 7
第二節 分數計算規則 10
第三節 研究對象 12
第肆章 研究結果分析 13
第一節 題目若為考古題之影響 14
第二節 模擬考及期末考之檢測 18
第三節 研究結果 20
第伍章 結論與建議 24
參考文獻 25
附錄A 27


1.Margaret Rouse(2013), Massive Open Online Course (MOOC). Available at: http://whatis.techtarget.com/definition/massively-open-online-course-MOOC

2. Collegiate Programming Examination(CPE). Available at: https://cpe.cse.nsysu.edu.tw/

3. Cathy Davidson(2013), What was the First MOOC? Available at: https://www.hastac.org/blogs/cathy-davidson/2013/09/27/what-was-first-mooc

4. Hew, K. F., & Cheung, W. S. (2014). Students’ and instructors’ use of massive open online courses (MOOCs): motivations and challenges. Educational Research Review, 12, 45–58.View ArticleGoogle Scholar

5. Dhawal Shah(2016), By The Numbers: MOOCs in 2016. Available at: https://www.class-central.com/report/mooc-stats-2016/

6. Tomas Franceschin(2016), Completion Rates Are The Greatest Challenge For MOOCs. Available at http://edu4.me/completion-rates-are-the-greatest-challenge-for-moocs/

7. C.Parr(2013), Mooc completion rates ‘below 7%. Available: https://www.timeshighereducation.com/news/mooc-completion-rates-below-7/2003710.article

8. Katy Jordan(2013), Synthesising MOOC completion rates Available at: https://moocmoocher.wordpress.com/2013/02/13/synthesising-mooc-completion-rates/

9. Devlin, K. (2013). MOOCS and Myths of Dropout Rates and Certification. Available at: http://www.huffingtonpost.com/dr-keith-devlin/moocs-and-myths-of-dr_b_2785808.html

10. Tom Snyder, Greg Byrd(2017), The Internet of Everything, IEEE computer society, 2017 vol.50, p8-9.

11. Ryan Bonhardt(2013), How To Increase MOOC Completion Rates. Available at: https://medium.com/effective-teaching-and-learning/how-to-increase-mooc-completion-rates-a3a211a4a52f

12.G. Balakrishnan(2013), Predicting Student Retention in Massive Open Online Courses using Hidden Markov Models, Master ’ s thesis.

13. Yang, D.; Sinha, T.; Adamson, D.; and Penstein, R(2013), Turn on, tune in, drop out: Anticipating student dropouts in, In NIPS Workshop on Data.

14. Idaya Husna Mohd, Norashikin Hussein, Ainie Harianie Aluwi(2016), Enhancing Students Engagement through Blended Learning Satisfaction and Lecturer Support, Engineering Education (ICEED), 2016 IEEE 8th International Conference.

15. Min Hu, Hao Li, Wenping Deng, Hua Guan(2016), Student Engagement: One of the Necessary Conditions for Online Learning, Educational Innovation through Technology (EITT), 2016 International Conference.

16. A. Ramesh, D. Goldwasser, B. Huang, H. Daume III, and L. Getoor(2014). Learning latent engagement patterns of students in online courses. In AAAI’14, pages 1272–1278.

17. Cassidy, D., Breakwell, N., & Bailey, J. (2014). Keeping them clicking: promoting student engagement in MOOC design. The All Ireland Journal of Teaching and Learning in Higher Education, 6(2), 1–15.Google Scholar

18. Shu-Fen Tseng, Yen-Wei Tsao, Liang-Chih Yu, Chien-Lung Chan and K. Robert Lai(2016), Who will pass? Analyzing learner behaviors in MOOCs, Research and Practice in Technology Enhanced Learning.

19. M.P. Mukala, J.C.A.M. Buijs, W.M.P. van der Aalst(2015), Exploring Students’ Learning Behaviour in MOOCs using Process Mining, BPMcenter.org, p26.

20. Ian Griffin(2014), Analysis of computer event logs to assess student engagement in classroom: a case study in the United States, Irish Journal of Academic Practice, Volume 3, Issue 1, Article 10.

21. D. T. Seaton, Y. Bergner, I. Chuang, P. Mitros, and D. E. Pritchard(2014), Who does what in a massive open online course? Communications of the ACM, 57(4):58–65.

22. Yuanyuan Liu, Zhong Xie, Jingying Chen(2016). An Intelligent Learning System for Supporting Interactive Learning through Student Engagement Study, Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 2016 12th International Conference.

23. Dimitrios Thanasoulas(2000). What is Learner Autonomy and How Can It Be Fostered. The Internet TESL Journal, Vol. VI, No. 11.

24. Sabitha. S.R.Najeeb(2013), Learner Autonomy in Language Learning, Procedia - Social and Behavioral Sciences, Volume 70, Pages 1238-1242.

25. Anderson, A., Huttenlocher, D., Kleinberg, J., & Leskovec, J. (2014). Engaging with massive online courses. In WWW '14 Proceedings of the 23rd international conference on world wide web (pp. 687–698).Google Scholar

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top