跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.57) 您好!臺灣時間:2026/02/07 12:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏宏融
研究生(外文):Hung Rong Yen
論文名稱:第17型CD4 (TH17)及CD8 (Tc17) T細胞:免疫力的功能與角色
論文名稱(外文):Type 17 CD4 (TH17) and CD8 (Tc17) T cells: their function and role in immunity
指導教授:林奏延林奏延引用關係
指導教授(外文):T. Y. Lin
學位類別:博士
校院名稱:長庚大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
論文頁數:101
中文關鍵詞:第十七型CD4 T細胞第十七型CD8 T細胞白細胞介素-17訊息傳遞與轉錄活化因子3
外文關鍵詞:TH17Tc17IL-17STAT3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1463
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
宿主對抗外來抗原的免疫機制分成與生俱來的先天性免疫反應與適應性免疫反應。而在適應性免疫中,具有專一性的T細胞免疫在傳統上可以分成第一型與第二型的T細胞免疫反應─分別可分泌IFN-g及IL-4。直到最近,一種新發現獨立於此的新的CD4 T細胞─「第十七型CD4 T細胞」(TH17),被發現到可以宰控在促發炎性的自體免疫疾病裏的免疫反應。

為了研究這種第十七型CD4 T細胞的轉錄層次的調控,我們的研究首先利用一種條件式STAT3剔除的動物模型—在此模型裏STAT3基因條件式地在CD4及CD8 T細胞裏被剔除,發現到STAT3是第十七型CD4 T細胞的主要調控因子。STAT3轉錄分子的磷酸化促進第十七型CD4 T細胞分泌IL-17,而在CD4 T細胞的STAT3剔除阻斷了兩種自體免疫疾病模型(自體免疫肺炎與實驗性自體免疫性腦炎)的發炎反應。以單株抗體阻斷IL-17與IL-23接受器則可以延長自體免疫肺炎小鼠的存活,印證了我們在基因剔除小鼠身上的發現。

接著我們進一步發現在CD8 T細胞也可以觀察到一種分泌IL-17的新型第十七型CD8 T細胞(Tc17)。我們純化分離這群細胞進行體內及體外的表現型與功能分析。第十七型CD8 T細胞所分泌的細胞激素及表現的接受器、轉錄分子等,均與傳統的第一型與第二型CD8 T細胞不同,這種新型的第十七型CD8 T細胞也需要ROR-gt的活化與STAT3轉錄分子的磷酸化來分泌IL-17。功能性的分析發現分泌第十七型CD8 T細胞在體外不具有細胞毒殺功能。然而,經由被動移植注射高度純化、具有抗原專一性的分泌IL-17的第十七型CD8 T到表現抗原的宿主裏,發現它在體內具有功能可塑性,可以轉換成為分泌IFN-g的毒殺細胞,並經過大量增生以後造成病理變化。我們推論第十七型CD8 T細胞比傳統第一型CD8 T細胞更可以有效地應用在感染症或腫瘤免疫治療。

第十七型CD4與第十七型CD8 T細胞免疫反應改寫了許多疾病的病理機轉,我們的研究除了闡明這兩種第十七型CD4與第十七型CD8 T細胞的功能與角色外,也提供了臨床醫學研究對於許多疾病宿主免疫反應的調控治療指引,未來可以用在自體免疫、感染症、腫瘤與移植免疫的相關研究。

The immune system uses two arms, innate immunity and adaptive immunity, to defend host against foreign pathogens. Among adaptive immunity, antigen-specific T cells mediated cellular immunity were traditionally classified as type 1 or type 2 T cells, which secrete IFN-g or IL-4, respectively. Until recently, a new lineage of CD4 T cells, type 17 CD4 (TH17) cells, was found to orchestrate immune response in pro-inflammatory autoimmune diseases.

To investigate the transcriptional control of TH17 differentiation, we first used a conditional knockout model, in which STAT3 gene is deleted in CD4 and CD8 T cells, to identify STAT3 as the master regulator of TH17 development. Phosphorylated STAT3 contributes to IL-17 production in TH17 cells and conditional deletion of STAT3 in CD4 T cells results in abrogation of inflammation in two autoimmune disease models, autoimmune pneumonitis and experimental autoimmune encephalitis. Blockade of IL-17 and IL-23 receptor via monoclonal antibodies prolonged survival in autoimmune pneumonitis mice and thus confirmed the findings in this conditional deletion model.

Our further studies in CD8 T cells defined a novel lineage of type 17 cytotoxic CD8 T cells that secrete IL-17 (Tc17). We purified this subset to characterize its phenotype and function in vitro and in vivo. Tc17 cells require activation of ROR-gt and phosphorylation of STAT3 to produce IL-17 and are different in cytokine production, expression of cytokine receptor and transcription factor from the traditional Tc1 and Tc2. Functional study of Tc17 in vitro showed decreased lytic function. However, adoptive transfer of highly-purified, antigen-specific, IL-17 secreting Tc17 cells to antigen-expressing hosts demonstrated functional plasticity in this CD8 T cell subset, with loss of IL-17 expression and acquisition of IFN-g expression after transfer, as well as increased accumulation and substantial pulmonary pathology as compared with Tc1 CD8 T cells. These studies suggest that adoptive transfer of Tc17 cells may have a role in the therapy of infectious disease and/or cancer.

The identification of type 17 CD4 and CD8 T cells revised the current mechanistic understanding of many diseases. Our studies not only elucidated the role and function of type 17 CD4 TH17 and Tc17 cells but can provide new hints in modulating immune response in clinical settings. These findings could be continued in further studies in autoimmune, infectious disease, cancer and transplantation.

指導教授推薦書………………………………………………………………
口試委員會審定書……………………………………………………………
授權書…………………………………………………………………………iii
ACKNOWLEDGEMENTS …………………………………………………………v
ABSTRACT (CHINESE) ………………………………………………………vi
ABSTRACT (ENGLISH) ……………………………………………………viii
TABLE OF CONTENTS ………………………………………………………x
LIST OF FIGURES …………………………………………………………xiii

CHAPTER 1. INTRODUCTION
1.1 INTRODUCTION ……………………………………………………….2
1.2 ADAPTIVE IMMUNITY ……………………………………………….2
1.3 REVISION OF TH1/TH2 PARADIGM ………………………………6
1.4 IL-17 CYTOKINE AND ITS RECEPTOR …………………………10
1.5 RESEARCH NICHES …………………………………………………12

CHAPTER 2. CD4 TH17 CELLS: THE REQUIREMENT OF STAT3 SIGNALING IN TH17 DEVELOPMENT AND ACTIVATION OF TH17 RESPONSE IN AUTOIMMUNE DISEASE
2.1 INTRODUCTION ……………………………………………………….16
2.2 MATERIALS AND METHODS
2.2.1 Mice …………………………………………………………………20
2.2.2 In vitro activation of T cells …………………………21
2.2.3 Isolation of gut associated lymphocytes ……………21
2.2.4 Experimental Autoimmune Encephalitis (EAE) induction ………………............................................22
2.2.5 Autoimmune pneumonitis ……………………………………23
2.2.6 Recombinant vaccinia virus…………………………..…24
2.2.7 Flow cytometry and intracellular staining (ICS)…24
2.2.8 Quantitative PCR ………………………………………………24
2.3 RESULTS
2.3.1 Generation of mice with STAT3 deficient CD4 T cells …………………...26
2.3.2 Endogenous TH17 are absent in STAT3-/- CD4 mice …………………..….27
2.3.3 Experimental autoimmune encephalomyelitis is mitigated in STAT3-/- CD4 mice …………………………………………………………..…………...28
2.3.4 STAT3 signaling is required for TH17-dependent autoimmune pneumonitis …………………………………………………………..…...30
2.3.5 Fatal autoimmune pneumonitis requires IL-17 / IL-23R / STAT3 signaling ………………………………………………………………...…33
2.4 DISCUSSION …………………………………………………………………..35

CHAPTER 3. CD8 Tc17 T CELLS: FUNCTIONAL PLASTICITY AND SUBSET DIVERSITY
3.1 INTRODUCTION ………………………………………………………..……..52
3.2 MATERIALS AND METHODS
3.2.1 Mice ………………………………………………………………….…….55
3.2.2 CD8 T cell polarization …………………………………………………….56
3.2.3 Flow cytometry and intracellular staining (ICS) ………………………..…56
3.2.4 Enrichment and purification of viable Tc subsets based on cytokine profile (Cytokine-Secretion Assay) …………………..………………………...…57
3.2.5 In vitro CTL assay ………………………………………………………….58
3.2.6 Recombinant vaccinia virus and Listeria monocytogenes ………………....59
3.2.7 Adoptive transfer …………………………………………………………...60
3.2.8 Quantitative real-time PCR …………………………………….…………..61
3.2.9 Histopathology…………………………………………………………...…61

3.3 RESULTS
3.3.1 IL-17 secreting CD8 T cells are phenotypically distinct from Tc1 and Tc2 cells …………………………………………………………………………..62
3.3.2 STAT3 is required for Tc17 polarization in vitro and in vivo ..........................63
3.3.3 In vitro polarization determines Tc1 and Tc17 phenotype and function ……..64
3.3.4 Tc17 cells show functional plasticity in vivo ………………………………...66
3.3.5 Adoptive transfer of Tc17 cells results in pulmonary pathology ……………..67
3.4 DISCUSSION…………………………………………………………………...68

CHAPTER 4. CONCLUSION
4.1 SUMMARY…………………………………………………………………......86
4.1 FUTURE WORK……….………………………………………………….........88

REFERENCES ………………………………………..……………………...……90

APPENDIX:
PUBLICATION ………………………………………...…….…………….…..102
SYMPOSIA AND SEMINA ……………………………………………………102


LIST OF FIGURES
Figure 2-1: Conditional deletion of STAT3 in CD4 lymphocytes from CD4-Cre x STAT3flox mice………………………………………………….……39
Figure 2-2: TH17 skewing requires STAT3 expression in vitro…………….….…41
Figure 2-3: STAT3 is required in vivo for development of endogenous gut-associated TH17 cells………………………………………..…………………….42
Figure 2-4: STAT3 expression in CD4 T cells is required for activation of TH17 response in experimental autoimmune encephalitis (EAE) induction....43
Figure 2-5: Experimental autoimmune encephalitis (EAE) induction results in CNS inflammation……………………………………………………….…..45
Figure 2-6: Clinical disease score and body weight change in experimental autoimmune encephalitis (EAE)……………………………………….46
Figure 2-7: STAT3 is required for the development of TH17 cells in an autoimmune pneumonitis model……………………………………………………..47
Figure 2-8: CD4 T cell expression of STAT3 is required for the development of fatal autoimmune pneumonitis………………………………………………50
Figure 3-1: In vitro polarization of IL-17 secreting CD8 T cells (Tc17)…………73
Figure 3-2: STAT3 is required for Tc17 differentiation in vitro………………….75
Figure 3-3: STAT3 is required for Tc17 differentiation in vivo………………….76
Figure 3-4: Phenotypic and effector molecule analysis of Tc1 and Tc17 subsets..78
Figure 3-5: Differential gene expression of Tc1 and Tc17 cells………………….79
Figure 3-6: in vitro CTL function of Tc1 and Tc17 cells………............................81
Figure 3-7: In vivo plasticity and persistence of Tc17 cells………………………82
Figure 3-8: Adoptive transfer of IL-17 secreting Tc17 cells results in pulmonary pathology……………………………………………………………….84
Adler AJ, Marsh DW, Yochum GS, et al. (1998) CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells. J Exp Med, 187, 1555-64.
Afkarian M, Sedy JR, Yang J, et al. (2002) T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat Immunol, 3, 549-57.
Aggarwal S, Gurney AL (2002) IL-17: prototype member of an emerging cytokine family. J Leukoc Biol, 71, 1-8.
Bao L, Lindgren JU, van der Meide P, Zhu S, Ljunggren HG, Zhu J (2002) The critical role of IL-12p40 in initiating, enhancing, and perpetuating pathogenic events in murine experimental autoimmune neuritis. Brain Pathol, 12, 420-9.
Becher B, Durell BG, Noelle RJ (2002) Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest, 110, 493-7.
Becker C, Pohla H, Frankenberger B, et al. (2001) Adoptive tumor therapy with T lymphocytes enriched through an IFN-gamma capture assay. Nat Med, 7, 1159-62.
Bending D, De La Pena H, Veldhoen M, et al. (2009) Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J Clin Invest, 119, 565-572.
Bettelli E, Carrier Y, Gao W, et al. (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 441, 235-8.
Billiau A, Heremans H, Vandekerckhove F, et al. (1988) Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J Immunol, 140, 1506-10.
Bjorneboe M, Gormsen H (2007) Experimental studies on the role of plasma cells as antibody producers. 1942. Apmis, 115, 440-83; discussion 484-5.
Bluestone JA, Mackay CR, O'Shea JJ, Stockinger B (2009) The functional plasticity of T cell subsets. Nat Rev Immunol, 9, 811-6.
Burrell BE, Csencsits K, Lu G, Grabauskiene S, Bishop DK (2008) CD8+ Th17 mediate costimulation blockade-resistant allograft rejection in T-bet-deficient mice. J Immunol, 181, 3906-14.
Chabaud M, Durand JM, Buchs N, et al. (1999) Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum, 42, 963-70.
Chang SH, Dong C (2007) A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res, 17, 435-40.
Chang SH, Park H, Dong C (2006) Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J Biol Chem, 281, 35603-7.
Chen XP, Falkner DH, Morel PA (2005) Impaired IL-4 production by CD8+ T cells in NOD mice is related to a defect of c-Maf binding to the IL-4 promoter. Eur J Immunol, 35, 1408-17.
Chen Z (2006) Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc. Natl Acad. Sci. USA, 103, 8137-8142.
Chen Z, Laurence A, Kanno Y, et al. (2006) Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci U S A, 103, 8137-42.
Cho ML, Kang JW, Moon YM, et al. (2006) STAT3 and NF-kappaB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol, 176, 5652-61.
Chung DR, Kasper DL, Panzo RJ, et al. (2003) CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. J Immunol, 170, 1958-63.
Chung Y, Dong C (2009) Don't leave home without it: the IL-23 visa to T(H)-17 cells. Nat Immunol, 10, 236-8.
Chung Y, Yang X, Chang SH, Ma L, Tian Q, Dong C (2006) Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes. Cell Res, 16, 902-7.
Coffman RL, Carty J (1986) A T cell activity that enhances polyclonal IgE production and its inhibition by interferon-gamma. J Immunol, 136, 949-54.
Cua DJ, Sherlock J, Chen Y, et al. (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature, 421, 744-8.
Curtis MM, Way SS, Wilson CB (2009) IL-23 promotes the production of IL-17 by antigen-specific CD8 T cells in the absence of IL-12 and type-I interferons. J Immunol, 183, 381-7.
Dobrzanski MJ, Reome JB, Hollenbaugh JA, Dutton RW (2004) Tc1 and Tc2 effector cell therapy elicit long-term tumor immunity by contrasting mechanisms that result in complementary endogenous type 1 antitumor responses. J Immunol, 172, 1380-90.
Dong C (2008a) Regulation and pro-inflammatory function of interleukin-17 family cytokines. Immunol Rev, 226, 80-6.
Dong C (2008b) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol, 8, 337-48.
Dumoutier L, Van Roost E, Ameye G, Michaux L, Renauld JC (2000) IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes. Genes Immun, 1, 488-94.
Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 391, 43-50.
Ferber IA, Brocke S, Taylor-Edwards C, et al. (1996) Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol, 156, 5-7.
Fossiez F, Banchereau J, Murray R, Van Kooten C, Garrone P, Lebecque S (1998) Interleukin-17. Int Rev Immunol, 16, 541-51.
Frisullo G, Angelucci F, Caggiula M, et al. (2006) pSTAT1, pSTAT3, and T-bet expression in peripheral blood mononuclear cells from relapsing-remitting multiple sclerosis patients correlates with disease activity. J Neurosci Res, 84, 1027-36.
Gaffen SL (2008) An overview of IL-17 function and signaling. Cytokine, 43, 402-7.
Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol, 9, 556-67.
Garcia-Hernandez Mde L, Hamada H, Reome JB, Misra SK, Tighe MP, Dutton RW (2010) Adoptive transfer of tumor-specific Tc17 effector T cells controls the growth of B16 melanoma in mice. J Immunol, 184, 4215-27.
Gattinoni L, Klebanoff CA, Palmer DC, et al. (2005) Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest, 115, 1616-26.
Goldberg MV, Maris CH, Hipkiss EL, et al. (2007) Role of PD-1 and its ligand, B7-H1, in early fate decisions of CD8 T cells. Blood, 110, 186-92.
Gran B, Zhang GX, Yu S, et al. (2002) IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol, 169, 7104-10.
Hamada H, Garcia-Hernandez Mde L, Reome JB, et al. (2009) Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol, 182, 3469-81.
Harrington LE (2005) Interleukin-17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol., 6, 1123-1132.
Harrington LE, Hatton RD, Mangan PR, et al. (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol, 6, 1123-32.
Harris TJ, Grosso JF, Yen HR, et al. (2007) Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol, 179, 4313-7.
He D, Wu L, Kim HK, Li H, Elmets CA, Xu H (2006) CD8+ IL-17-producing T cells are important in effector functions for the elicitation of contact hypersensitivity responses. J Immunol, 177, 6852-8.
Helmich BK, Dutton RW (2001) The role of adoptively transferred CD8 T cells and host cells in the control of the growth of the EG7 thymoma: factors that determine the relative effectiveness and homing properties of Tc1 and Tc2 effectors. J Immunol, 166, 6500-8.
Higgins AD, Mihalyo MA, McGary PW, Adler AJ (2002) CD4 cell priming and tolerization are differentially programmed by APCs upon initial engagement. J Immunol, 168, 5573-81.
Hinrichs CS, Kaiser A, Paulos CM, et al. (2009) Type 17 CD8+ T cells display enhanced antitumor immunity. Blood, 114, 596-9.
Ho AW, Gaffen SL (2010) IL-17RC: a partner in IL-17 signaling and beyond. Semin Immunopathol, 32, 33-42.
Huang CT, Workman CJ, Flies D, et al. (2004a) Role of LAG-3 in regulatory T cells. Immunity, 21, 503-13.
Huang SH, Frydas S, Kempuraj D, et al. (2004b) Interleukin-17 and the interleukin-17 family member network. Allergy Asthma Proc, 25, 17-21.
Huang W, Na L, Fidel PL, Schwarzenberger P (2004c) Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis, 190, 624-31.
Huang X, Zhu J, Yang Y (2005) Protection against autoimmunity in nonlymphopenic hosts by CD4+ CD25+ regulatory T cells is antigen-specific and requires IL-10 and TGF-beta. J Immunol, 175, 4283-91.
Huber M, Heink S, Grothe H, et al. (2009) A Th17-like developmental process leads to CD8(+) Tc17 cells with reduced cytotoxic activity. Eur J Immunol, 39, 1716-25.
Hymowitz SG, Filvaroff EH, Yin JP, et al. (2001) IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J, 20, 5332-41.
Infante-Duarte C, Horton HF, Byrne MC, Kamradt T (2000) Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol, 165, 6107-15.
Intlekofer AM, Banerjee A, Takemoto N, et al. (2008) Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science, 321, 408-11.
Ivanov, II, McKenzie BS, Zhou L, et al. (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell, 126, 1121-33.
Janeway C (2008) Basic concepts in immunobiology, Garland Science, Taylor &; Francis Group, LLC.
Jee Y, Kim G, Tanuma N, Matsumoto Y (2001) STAT expression and localization in the central nervous system during autoimmune encephalomyelitis in Lewis rats. J Neuroimmunol, 114, 40-7.
Knappe A, Hiller C, Niphuis H, et al. (1998) The interleukin-17 gene of herpesvirus saimiri. J Virol, 72, 5797-801.
Koga C, Kabashima K, Shiraishi N, Kobayashi M, Tokura Y (2008) Possible pathogenic role of Th17 cells for atopic dermatitis. J Invest Dermatol, 128, 2625-30.
Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity, 21, 467-76.
Kondo T, Takata H, Matsuki F, Takiguchi M (2009) Cutting edge: Phenotypic characterization and differentiation of human CD8+ T cells producing IL-17. J Immunol, 182, 1794-8.
Korn T, Bettelli E, Gao W, et al. (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature, 448, 484-7.
Krammer PH, Arnold R, Lavrik IN (2007) Life and death in peripheral T cells. Nat Rev Immunol, 7, 532-42.
Krause A, Scaletta N, Ji JD, Ivashkiv LB (2002) Rheumatoid arthritis synoviocyte survival is dependent on Stat3. J Immunol, 169, 6610-6.
Kryczek I, Wei S, Szeliga W, Vatan L, Zou W (2009) Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood, 114, 357-9.
Kumaraguru U, Suvas S, Biswas PS, Azkur AK, Rouse BT (2004) Concomitant helper response rescues otherwise low avidity CD8+ memory CTLs to become efficient effectors in vivo. J Immunol, 172, 3719-24.
Langrish CL (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med., 201, 233-240.
Langrish CL, Chen Y, Blumenschein WM, et al. (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med, 201, 233-40.
Laurence A, Tato CM, Davidson TS, et al. (2007) Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity, 26, 371-81.
Lee YK, Mukasa R, Hatton RD, Weaver CT (2009a) Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol, 21, 274-80.
Lee YK, Turner H, Maynard CL, et al. (2009b) Late developmental plasticity in the T helper 17 lineage. Immunity, 30, 92-107.
Lefrancois L, Obar JJ (2010) Once a killer, always a killer: from cytotoxic T cell to memory cell. Immunol Rev, 235, 206-18.
Levin SD (2009) IL-17 receptor signaling: ubiquitin gets in on the act. Sci Signal, 2, pe64.
Liang SC, Long AJ, Bennett F, et al. (2007) An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol, 179, 7791-9.
Lieberman J (2003) The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol, 3, 361-70.
Lieberman LA, Cardillo F, Owyang AM, et al. (2004) IL-23 provides a limited mechanism of resistance to acute toxoplasmosis in the absence of IL-12. J Immunol, 173, 1887-93.
Liu CC, Joag SV, Kwon BS, Young JD (1990) Induction of perforin and serine esterases in a murine cytotoxic T lymphocyte clone. J Immunol, 144, 1196-201.
Liu CC, Persechini PM, Young JD (1995a) Perforin and lymphocyte-mediated cytolysis. Immunol Rev, 146, 145-75.
Liu CC, Walsh CM, Young JD (1995b) Perforin: structure and function. Immunol Today, 16, 194-201.
Liu K, Liang C, Liang Z, Tus K, Wakeland EK (2005) Sle1ab mediates the aberrant activation of STAT3 and Ras-ERK signaling pathways in B lymphocytes. J Immunol, 174, 1630-7.
Liu SJ, Tsai JP, Shen CR, et al. (2007) Induction of a distinct CD8 Tnc17 subset by transforming growth factor-beta and interleukin-6. J Leukoc Biol, 82, 354-60.
Lock C, Hermans G, Pedotti R, et al. (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med, 8, 500-8.
Martin-Orozco N, Dong C (2009) The IL-17/IL-23 axis of inflammation in cancer: friend or foe? Curr Opin Investig Drugs, 10, 543-9.
Martin-Orozco N, Muranski P, Chung Y, et al. (2009) T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity, 31, 787-98.
Mathur AN, Chang HC, Zisoulis DG, et al. (2007) Stat3 and Stat4 direct development of IL-17-secreting Th cells. J Immunol, 178, 4901-7.
Metkar SS, Wang B, Aguilar-Santelises M, et al. (2002) Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme B-serglycin complexes into target cells without plasma membrane pore formation. Immunity, 16, 417-28.
Miossec P, Korn T, Kuchroo VK (2009) Interleukin-17 and type 17 helper T cells. N Engl J Med, 361, 888-98.
Morgan DJ, Liblau R, Scott B, et al. (1996) CD8(+) T cell-mediated spontaneous diabetes in neonatal mice. J Immunol, 157, 978-83.
Moseley TA, Haudenschild DR, Rose L, Reddi AH (2003a) Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev, 14, 155-74.
Moseley TA, Haudenschild DR, Rose L, Reddi AH (2003b) Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev., 14, 155-174.
Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol., 136, 2348-2357.
Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol, 7, 145-73.
Mosmann TR, Li L, Sad S (1997) Functions of CD8 T-cell subsets secreting different cytokine patterns. Semin Immunol, 9, 87-92.
Muranski P, Boni A, Antony PA, et al. (2008) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood, 112, 362-73.
Murphy CA, Langrish CL, Chen Y, et al. (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med, 198, 1951-7.
Murphy E, Shibuya K, Hosken N, et al. (1996) Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J Exp Med, 183, 901-13.
Murugaiyan G, Saha B (2009) Protumor vs antitumor functions of IL-17. J Immunol, 183, 4169-75.
Nam JS, Terabe M, Kang MJ, et al. (2008) Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17. Cancer Res, 68, 3915-23.
Nograles KE, Zaba LC, Shemer A, et al. (2009) IL-22-producing "T22" T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol, 123, 1244-52 e2.
Nurieva R, Yang XO, Martinez G, et al. (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature, 448, 480-3.
O'Connor RA, Taams LS, Anderton SM (2010a) Translational mini-review series on Th17 cells: CD4 T helper cells: functional plasticity and differential sensitivity to regulatory T cell-mediated regulation. Clin Exp Immunol, 159, 137-47.
O'Connor W, Jr., Zenewicz LA, Flavell RA (2010b) The dual nature of T(H)17 cells: shifting the focus to function. Nat Immunol, 11, 471-6.
O'Shea JJ, Hunter CA, Germain RN (2008) T cell heterogeneity: firmly fixed, predominantly plastic or merely malleable? Nat Immunol, 9, 450-3.
O'Shea JJ, Steward-Tharp SM, Laurence A, et al. (2009) Signal transduction and Th17 cell differentiation. Microbes Infect, 11, 599-611.
Oppmann B, Lesley R, Blom B, et al. (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity, 13, 715-25.
Ortega C, Fernandez AS, Carrillo JM, et al. (2009) IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J Leukoc Biol, 86, 435-43.
Park H (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin-17. Nature Immunol., 6, 1133-1141.
Park H, Li Z, Yang XO, et al. (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol, 6, 1133-41.
Prezzi C, Casciaro MA, Francavilla V, et al. (2001) Virus-specific CD8(+) T cells with type 1 or type 2 cytokine profile are related to different disease activity in chronic hepatitis C virus infection. Eur J Immunol, 31, 894-906.
Radojcic V, Pletneva MA, Yen HR, et al. (2010) STAT3 signaling in CD4+ T cells is critical for the pathogenesis of chronic sclerodermatous graft-versus-host disease in a murine model. J Immunol, 184, 764-74.
Rouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P (1993) CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol, 150, 5445-56.
Sakaguchi S (2008) Regulatory T cells in the past and for the future. Eur J Immunol, 38, 901-37.
Sakaguchi S, Ono M, Setoguchi R, et al. (2006) Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev, 212, 8-27.
Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell, 133, 775-87.
Shen F, Gaffen SL (2008) Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine, 41, 92-104.
Silva WA, Jr., Covas DT, Panepucci RA, et al. (2003) The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells, 21, 661-9.
Sprent J, Schaefer M (1986) Capacity of purified Lyt-2+ T cells to mount primary proliferative and cytotoxic responses to Ia- tumour cells. Nature, 322, 541-4.
Staveley-O'Carroll K, Sotomayor E, Montgomery J, et al. (1998) Induction of antigen-specific T cell anergy: An early event in the course of tumor progression. Proc Natl Acad Sci U S A, 95, 1178-83.
Steinman L (2007) A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med, 13, 139-45.
Stevens TL, Bossie A, Sanders VM, et al. (1988) Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature, 334, 255-8.
Suda T, Takahashi T, Golstein P, Nagata S (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell, 75, 1169-78.
Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med, 203, 1685-91.
Takatori H, Kanno Y, Chen Z, O'Shea JJ (2008) New complexities in helper T cell fate determination and the implications for autoimmune diseases. Mod Rheumatol, 18, 533-41.
Takemoto N, Intlekofer AM, Northrup JT, Wherry EJ, Reiner SL (2006) Cutting Edge: IL-12 inversely regulates T-bet and eomesodermin expression during pathogen-induced CD8+ T cell differentiation. J Immunol, 177, 7515-9.
Tong J, Bandulwala HS, Clay BS, et al. (2006) Fas-positive T cells regulate the resolution of airway inflammation in a murine model of asthma. J Exp Med, 203, 1173-84.
Toy D (2006) Cutting edge: Interleukin-17 signals through a heteromeric receptor complex. J. Immunol., 177, 36-39.
Van Kooten C, Boonstra JG, Paape ME, et al. (1998) Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J Am Soc Nephrol, 9, 1526-34.
Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 24, 179-89.
Veldhoen M, Uyttenhove C, van Snick J, et al. (2008) Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol, 9, 1341-6.
Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol, 8, 523-32.
Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H (2009) IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med, 206, 1457-64.
Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity, 24, 677-88.
Weaver CT, Rudensky AY (2009) Editorial overview: lymphocyte development. Curr Opin Immunol, 21, 119-20.
Wilson CB, Rowell E, Sekimata M (2009) Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol, 9, 91-105.
Woodland DL, Dutton RW (2003) Heterogeneity of CD4(+) and CD8(+) T cells. Curr Opin Immunol, 15, 336-42.
Wu S, Rhee KJ, Albesiano E, et al. (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med, 15, 1016-22.
Yang XO (2008) T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR[alpha] and ROR[gamma]. Immunity, 28, 29-39.
Yang XO, Chang SH, Park H, et al. (2008a) Regulation of inflammatory responses by IL-17F. J Exp Med, 205, 1063-75.
Yang XO, Nurieva R, Martinez GJ, et al. (2008b) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity, 29, 44-56.
Yang XO, Panopoulos AD, Nurieva R, et al. (2007a) STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem.
Yang XO, Panopoulos AD, Nurieva R, et al. (2007b) STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem, 282, 9358-63.
Yang Y, Huang CT, Huang X, Pardoll DM (2004) Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol, 5, 508-15.
Yao Z (1995) Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity, 3, 811-821.
Yao Z, Fanslow WC, Seldin MF, et al. (1995a) Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity, 3, 811-21.
Yao Z, Painter SL, Fanslow WC, et al. (1995b) Human IL-17: a novel cytokine derived from T cells. J Immunol, 155, 5483-6.
Ye P, Garvey PB, Zhang P, et al. (2001) Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am J Respir Cell Mol Biol, 25, 335-40.
Yeh N, Glosson NL, Wang N, et al. (2010) Tc17 cells are capable of mediating immunity to vaccinia virus by acquisition of a cytotoxic phenotype. J Immunol, 185, 2089-98.
Yen D, Cheung J, Scheerens H, et al. (2006) IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest, 116, 1310-6.
Yen HR, Harris TJ, Wada S, et al. (2009) Tc17 CD8 T cells: functional plasticity and subset diversity. J Immunol, 183, 7161-8.
Young JD, Clark WR, Liu CC, Cohn ZA (1987) A calcium- and perforin-independent pathway of killing mediated by murine cytolytic lymphocytes. J Exp Med, 166, 1894-9.
Young JD, Cohn ZA, Podack ER (1986) The ninth component of complement and the pore-forming protein (perforin 1) from cytotoxic T cells: structural, immunological, and functional similarities. Science, 233, 184-90.
Young JD, Liu CC, Persechini PM, Cohn ZA (1988) Perforin-dependent and -independent pathways of cytotoxicity mediated by lymphocytes. Immunol Rev, 103, 161-202.
Zheng Y (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med., 14, 282-289.
Zheng Y, Danilenko DM, Valdez P, et al. (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature, 445, 648-51.
Zhong Z, Wen Z, Darnell JE, Jr. (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science, 264, 95-8.
Zhou L, Lopes JE, Chong MM, et al. (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature, 453, 236-40.
Zou W, Restifo NP (2010) T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol, 10, 248-56.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文