跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳鈺蒨
研究生(外文):Yu-Chien Chen
論文名稱:NQ-1經由活化AMPK路徑增加肌肉細胞對葡萄糖的攝取
論文名稱(外文):NQ-1 increases glucose uptake through activation of AMP-activated protein kinase in muscle cells
指導教授:梁有志
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:62
中文關鍵詞:糖尿病腺苷單磷酸活化蛋白激酶葡萄糖的攝取
外文關鍵詞:Diabetes mellitusAMP-activated protein kinaseGlucose uptake
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1419
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  腺苷單磷酸活化蛋白激酶 (AMP-activated protein kinase, AMPK) 是一個感應細胞內能量代謝的關鍵調控者, AMPK 在骨骼肌、肝臟及脂肪組織中活化會減少血糖濃度、血漿中脂質濃度及異常的脂肪累積,並增加胰島素敏感性,因此 AMPK 可作為預防與治療第二型糖尿病的分子標耙。 NQ-1 是由中草藥萃取出來的物質,本實驗室先前的研究發現 NQ-1 具有降血糖的活性,但 NQ-1 影響降血糖的詳細機制目前尚不清楚,因此本論文主要為探討 NQ-1 在動物體內的影響及使用細胞實驗探討降血糖的機轉。本論文所使用的實驗動物為糖尿病小鼠 (db/db mice) 與肥胖小鼠 (ob/ob mice) ,研究結果發現,給予 NQ-1 的組別之血糖相較於控制組有下降的情形。此外,本論文利用老鼠骨骼肌細胞 L6 與人類肝癌細胞 HepG2 作為探討分子機轉的模式,在給予 NQ-1 後利用西方墨點法分析蛋白質的表現及變化,結果發現, NQ-1 會活化 AMPK ,並抑制下游 Acetyl-CoA carboxylase (ACC) 的活性,這兩個蛋白質在葡萄糖攝取及代謝中扮演很重要的角色。此外,由 NQ-1 所引起的 ACC 磷酸化會被 Compound C (AMPK 抑制劑) 抑制,代表 NQ-1 所誘發的訊息傳遞屬於 AMPK 依賴性路徑。接著利用帶有螢光的葡萄糖類似物探討 NQ-1 是否會增加 L6 細胞對於葡萄糖攝取的能力,由結果發現隨著 NQ-1 濃度增加,細胞攝取葡萄糖的能力亦顯著增加。並且在西方墨點法實驗中亦發現 NQ-1 會增加第四型葡萄糖轉運蛋白 (Glucose transporter 4, GLUT4) 表現至細胞膜上,使 GLUT4 發揮運送葡萄糖的功能。接著利用 HPLC 方法探討 NQ-1 對 AMP/ATP 比例的影響,發現 NQ-1 會增加 AMP/ATP 的比例。這些結果顯示 NQ-1 會增加 AMP/ATP 比例引發 AMPK 訊息路徑的活化,並增加細胞膜上 GLUT4 的含量與葡萄糖攝取的能力。因此我們認為 NQ-1 或許具有開發成為第二型糖尿病藥物的潛力。
AMP-activated protein kinase (AMPK) is an energy sensor that regulates cellular metabolism. Activation of AMPK in skeletal muscle, liver, and adipose tissue results in a favorable metabolic milieu for the prevention or treatment of type 2 diabetes, i.e., decreased circulating glucose, reduced plasma lipid, and ectopic fat accumulation, as well as enhanced insulin sensitivity. NQ-1 was extracted from Chinese herb medicine, and was found that had a hypoglycemic activity in our previous study. However, the detail hypoglycemic mechanisms of NQ-1 are still unclear. In animal model, male db/db mice and ob/ob mice were used to examine the possible hypoglycemic activity, and showed that NQ-1 significantly decreased plasma blood glucose levels in both animal strains. In vitro study, mouse skeletal muscle cells L6 and human hepatoma cells HepG2 were used to examine the underlying molecular machenisms of NQ-1 on hypoglycemic activity. Western blot analysis revealed that NQ-1 induced the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC), which play an important role in glucose uptake and metabolism. In addition, NQ-1-induced phosphorylation of ACC was suppressed by compound C, an AMPK inhibitor, suggesting that NQ-1-induced phosphorylation was mediated through AMPK-dependent manner. Next, we examined whether NQ-1 could increase glucose uptake by a fluorescent glucose analog in L6 cells. We found that NQ-1 significantly increased glucose uptake in a dose-dependent manner. In addition, NQ-1 also increased glucose transporter 4 (GLUT4) translocation to plasma membrane by Western blot analysis. To examine whether NQ-1 activaed AMPK through the change of AMP/ATP ratio, we determined the ATP and AMP levels by HPLC. The results showed that NQ-1 dose-dependently increased AMP/ATP ratio. These results suggest that the increase in the AMP/ATP ratio by NQ-1 triggers the activation of AMPK signaling pathway and leads to increase plasma membrane GLUT4 content and glucose uptake. Therefore, we hypothesize that NQ-1 has potential as an antidiabetes agent for the treatment of type 2 diabetes.
縮寫表 VI
Abstract VIII
中文摘要 IX
第一章 研究動機與目的 (Study aim) 1
第二章 緒論 (Introduction) 2
第一節 糖尿病 (Diabetes mellitus, DM) 2
一、糖尿病的定義 (Definition of diabetes mellitus) 2
二、糖尿病診斷標準 (Diagnoses of diabetes mellitus) 2
三、糖尿病的分類 (The classification of diabetes) 2
四、糖尿病的發病機制 (Diabetes pathogenesis) 4
五、糖尿病併發症 (Complications of diabetes mellitus) 6
六、糖尿病的治療 (The treatment of diabetes mellitus) 6
第二節 血糖恆定 (Glucose homeostasis) 10
第三節 胰島素訊息傳遞路徑 (Insulin signaling pathway) 11
一、 PI3-K 的活化 13
二、胰島素誘導之磷酸化連鎖反應 (Insulin-stimulated phosphorylation cascades) 13
三、 Cbl/CAP 路徑與脂質筏 (Cbl/CAP pathway and lipid rafts) 14
第四節 腺苷單磷酸活化蛋白激酶 (AMP-activated protein kinase, AMPK) 14
一、 AMPK 的結構與調控 (Structure and regulation of AMPK) 15
二、 AMPK 與血糖恆定 (AMPK and Glucose homeostasis) 17
三、 AMPK 與糖尿病 (AMPK and diabetes mellitus) 19
第五節 NQ-1 之簡介 20
第六節 實驗動物 (Laboratory animals) 21
一、糖尿病小鼠 (db/db mice) 21
二、肥胖小鼠 (ob/ob mice) 21
第三章 材料與方法 (Materials and methods) 22
一、細胞培養 (Cell culture) 22
二、西方墨點法 (Western blot) 23
三、膜蛋白的萃取 (Membrane protein extraction) 25
四、結晶紫染色試驗 (Crystal violet assay) 25
五、腺嘌呤核苷酸分析 (Adenine nucleotides analysis) 26
六、葡萄糖攝取試驗 (Glucose uptake assay) 26
七、反轉錄聚合酶酵素連鎖反應 (Reverse transcriptase polymerase chain reaction, RT-PCR) 27
八、動物實驗 ( Animal experiment) 29
九、統計方法 (Statistics) 30
第四章 結果 (Results) 31
一、 NQ-1 在動物體內具有降血糖功效 31
二、老鼠肌纖維母細胞的分化 31
三、 NQ-1 對於細胞的毒性測試 32
四、 NQ-1 具有活化 AMPK 的能力 32
五、 Compound C 可以抑制由 NQ-1 誘發的 AMPK 磷酸化 33
六、 NQ-1具有促進細胞攝取葡萄糖的能力 33
七、 NQ-1 具有增加 AMP/ATP 比例的能力 34
八、 NQ-1 具有活化 PI3-K /Akt signaling pathway 的能力 34
九、 NQ-1 對 AS160 的影響 35
第五章 討論 (Discussion) 36
第六章 參考文獻 (References) 41
第七章 目次圖表 (Figures lists) 49
Figure 1. Anti-diabetic effect of NQ-1 in vivo experiment. 49
Table 1. Clinical and biochemical parameters in the db/db mice study. 50
Table 2. Clinical and biochemical parameters in the ob/ob mice study. 50
Figure 2. Differentiation of mouse skeletal myoblasts, L6 and C2C12. 51
Figure 3. Effect of NQ-1 on cell viability. 52
Figure 4. NQ-1 increased phosphorylation of AMPK and ACC in rat myoblast cells in a dose- and time-dependent manner. 53
Figure 5. NQ-1 increased phosphorylation of AMPK in HepG2, human hepatoma cells, in a dose- and time-dependent manner. 54
Figure 6. The effect of AMPK inhibitor Compound C on phosphorylation of AMPK after NQ-1 treatment in mouse L6 muscle cells. 55
Figure 7. NQ-1 promoted GLUT4 translocation and stimulated glucose uptake in skeletal muscle cells. 56
Figure 8. NQ-1 increased the cellular AMP/ATP ratio. 58
Figure 9. Phosphorylation of Akt serine-473, GSK3??/?? serine-21/9 and AS160 in differentiated L6 cells. 59
第八章 附錄 (Appendixes) 60
1.Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH, Hu FB: Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 2009, 301:2129-2140.
2.King H, Aubert RE, Herman WH: Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care 1998, 21:1414-1431.
3.Faideau B, Larger E, Lepault F, Carel JC, Boitard C: Role of beta-cells in type 1 diabetes pathogenesis. Diabetes 2005, 54 Suppl 2:S87-96.
4.Pessin JE, Saltiel AR: Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 2000, 106:165-169.
5.Stern MP: Strategies and prospects for finding insulin resistance genes. J Clin Invest 2000, 106:323-327.
6.Guilherme A, Virbasius JV, Puri V, Czech MP: Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008, 9:367-377.
7.Donnelly R, Emslie-Smith AM, Gardner ID, Morris AD: ABC of arterial and venous disease: vascular complications of diabetes. BMJ 2000, 320:1062-1066.
8.Aring AM, Jones DE, Falko JM: Evaluation and prevention of diabetic neuropathy. Am Fam Physician 2005, 71:2123-2128.
9.Fonseca VA, Kulkarni KD: Management of type 2 diabetes: oral agents, insulin, and injectables. J Am Diet Assoc 2008, 108:S29-33.
10.Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M: Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 2003, 290:486-494.
11.Kleppinger EL, Vivian EM: Pramlintide for the treatment of diabetes mellitus. Ann Pharmacother 2003, 37:1082-1089.
12.Saltiel AR, Kahn CR: Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414:799-806.
13.Van Obberghen E, Baron V, Delahaye L, Emanuelli B, Filippa N, Giorgetti-Peraldi S, Lebrun P, Mothe-Satney I, Peraldi P, Rocchi S, et al: Surfing the insulin signaling web. Eur J Clin Invest 2001, 31:966-977.
14.Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD: ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 1991, 65:663-675.
15.Lazar DF, Wiese RJ, Brady MJ, Mastick CC, Waters SB, Yamauchi K, Pessin JE, Cuatrecasas P, Saltiel AR: Mitogen-activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin. J Biol Chem 1995, 270:20801-20807.
16.Ogawa W, Matozaki T, Kasuga M: Role of binding proteins to IRS-1 in insulin signalling. Mol Cell Biochem 1998, 182:13-22.
17.Hardie DG: Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 2003, 144:5179-5183.
18.Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, et al: AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 2003, 31:162-168.
19.Long YC, Zierath JR: AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006, 116:1776-1783.
20.Carling D: The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem Sci 2004, 29:18-24.
21.Schimmack G, Defronzo RA, Musi N: AMP-activated protein kinase: Role in metabolism and therapeutic implications. Diabetes Obes Metab 2006, 8:591-602.
22.Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D: Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2005, 2:21-33.
23.Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA: The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 2005, 280:29060-29066.
24.Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG: Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2005, 2:9-19.
25.Hardie DG: The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci 2004, 117:5479-5487.
26.Kahn BB, Alquier T, Carling D, Hardie DG: AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005, 1:15-25.
27.Towler MC, Hardie DG: AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 2007, 100:328-341.
28.Birnbaum MJ: Activating AMP-activated protein kinase without AMP. Mol Cell 2005, 19:289-290.
29.Carling D, Sanders MJ, Woods A: The regulation of AMP-activated protein kinase by upstream kinases. Int J Obes (Lond) 2008, 32 Suppl 4:S55-59.
30.Porte D, Jr., Seeley RJ, Woods SC, Baskin DG, Figlewicz DP, Schwartz MW: Obesity, diabetes and the central nervous system. Diabetologia 1998, 41:863-881.
31.Schwartz MW, Woods SC, Porte D, Jr., Seeley RJ, Baskin DG: Central nervous system control of food intake. Nature 2000, 404:661-671.
32.Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, Carling D, Small CJ: AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 2004, 279:12005-12008.
33.Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferre P, Birnbaum MJ, et al: AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004, 428:569-574.
34.Kim EK, Miller I, Aja S, Landree LE, Pinn M, McFadden J, Kuhajda FP, Moran TH, Ronnett GV: C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase. J Biol Chem 2004, 279:19970-19976.
35.Leibowitz SF, Wortley KE: Hypothalamic control of energy balance: different peptides, different functions. Peptides 2004, 25:473-504.
36.Perrin C, Knauf C, Burcelin R: Intracerebroventricular infusion of glucose, insulin, and the adenosine monophosphate-activated kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, controls muscle glycogen synthesis. Endocrinology 2004, 145:4025-4033.
37.Teng CM, Lin CH, Ko FN, Wu TS, Huang TF: The relaxant action of osthole isolated from Angelica pubescens in guinea-pig trachea. Naunyn Schmiedebergs Arch Pharmacol 1994, 349:202-208.
38.Ko FN, Wu TS, Liou MJ, Huang TF, Teng CM: Vasorelaxation of rat thoracic aorta caused by osthole isolated from Angelica pubescens. Eur J Pharmacol 1992, 219:29-34.
39.Chou SY, Hsu CS, Wang KT, Wang MC, Wang CC: Antitumor effects of Osthol from Cnidium monnieri: an in vitro and in vivo study. Phytother Res 2007, 21:226-230.
40.Chen ZC, Duan XB, Liu KR: [The anti-allergic activity of osthol extracted from the fruits of Cnidium monnieri (L.) Cusson]. Yao Xue Xue Bao 1988, 23:96-99.
41.Matsuda H, Tomohiro N, Ido Y, Kubo M: Anti-allergic effects of cnidii monnieri fructus (dried fruits of Cnidium monnieri) and its major component, osthol. Biol Pharm Bull 2002, 25:809-812.
42.Chen YF, Tsai HY, Wu TS: Anti-inflammatory and analgesic activities from roots of Angelica pubescens. Planta Med 1995, 61:2-8.
43.Liu J, Zhang W, Zhou L, Wang X, Lian Q: Anti-inflammatory effect and mechanism of osthole in rats. Zhong Yao Cai 2005, 28:1002-1006.
44.Ogawa H, Sasai N, Kamisako T, Baba K: Effects of osthol on blood pressure and lipid metabolism in stroke-prone spontaneously hypertensive rats. J Ethnopharmacol 2007, 112:26-31.
45.Zhang Y, Xie ML, Zhu LJ, Gu ZL: Therapeutic effect of osthole on hyperlipidemic fatty liver in rats. Acta Pharmacol Sin 2007, 28:398-403.
46.Song F, Xie ML, Zhu LJ, Zhang KP, Xue J, Gu ZL: Experimental study of osthole on treatment of hyperlipidemic and alcoholic fatty liver in animals. World J Gastroenterol 2006, 12:4359-4363.
47.Li XX, Hara I, Matsumiya T: Effects of osthole on postmenopausal osteoporosis using ovariectomized rats; comparison to the effects of estradiol. Biol Pharm Bull 2002, 25:738-742.
48.Kuo PL, Hsu YL, Chang CH, Chang JK: Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells. J Pharmacol Exp Ther 2005, 314:1290-1299.
49.Sun F, Xie ML, Zhu LJ, Xue J, Gu ZL: Inhibitory effect of osthole on alcohol-induced fatty liver in mice. Dig Liver Dis 2009, 41:127-133.
50.Zhang Y, Xie M, Xue J, Gu Z: Osthole improves fat milk-induced fatty liver in rats: modulation of hepatic PPAR-alpha/gamma-mediated lipogenic gene expression. Planta Med 2007, 73:718-724.
51.Zhang Y, Xie ML, Xue J, Gu ZL: Osthole regulates enzyme protein expression of CYP7A1 and DGAT2 via activation of PPARalpha/gamma in fat milk-induced fatty liver rats. J Asian Nat Prod Res 2008, 10:807-812.
52.陳乃琦: NQ-1 降血糖分子機制探討:體外及體內試驗. 臺北醫學大學, 醫學科學研究所.
53.Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N: Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 2005, 280:32081-32089.
54.Napolitano MJ, Shain DH: Quantitating adenylate nucleotides in diverse organisms. J Biochem Biophys Methods 2005, 63:69-77.
55.Lloyd PG, Hardin CD, Sturek M: Examining glucose transport in single vascular smooth muscle cells with a fluorescent glucose analog. Physiol Res 1999, 48:401-410.
56.Fukushima M, Hattori Y, Tsukada H, Koga K, Kajiwara E, Kawano K, Kobayashi T, Kamata K, Maitani Y: Adiponectin gene therapy of streptozotocin-induced diabetic mice using hydrodynamic injection. J Gene Med 2007, 9:976-985.
57.Ludolph DC, Konieczny SF: Transcription factor families: muscling in on the myogenic program. FASEB J 1995, 9:1595-1604.
58.Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, et al: Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001, 108:1167-1174.
59.DeFronzo RA, Ferrannini E, Sato Y, Felig P, Wahren J: Synergistic interaction between exercise and insulin on peripheral glucose uptake. J Clin Invest 1981, 68:1468-1474.
60.Cartee GD, Wojtaszewski JF: Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport. Appl Physiol Nutr Metab 2007, 32:557-566.
61.Desvergne B, Wahli W: Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999, 20:649-688.
62.Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC: Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998, 98:2088-2093.
63.Ma X, Iwanaka N, Masuda S, Karaike K, Egawa T, Hamada T, Toyoda T, Miyamoto L, Nakao K, Hayashi T: Morus alba leaf extract stimulates 5''-AMP-activated protein kinase in isolated rat skeletal muscle. J Ethnopharmacol 2009, 122:54-59.
64.Kim SJ, Jung JY, Kim HW, Park T: Anti-obesity effects of Juniperus chinensis extract are associated with increased AMP-activated protein kinase expression and phosphorylation in the visceral adipose tissue of rats. Biol Pharm Bull 2008, 31:1415-1421.
65.Jung KH, Ha E, Kim MJ, Uhm YK, Kim HK, Hong SJ, Chung JH, Yim SV: Ganoderma lucidum extract stimulates glucose uptake in L6 rat skeletal muscle cells. Acta Biochim Pol 2006, 53:597-601.
66.Yin J, Gao Z, Liu D, Liu Z, Ye J: Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab 2008, 294:E148-156.
67.Lee MS, Kim CH, Hoang DM, Kim BY, Sohn CB, Kim MR, Ahn JS: Genistein-derivatives from Tetracera scandens stimulate glucose-uptake in L6 myotubes. Biol Pharm Bull 2009, 32:504-508.
68.Han JH, Ahn YH, Choi KY, Hong SH: Involvement of AMP-activated protein kinase and p38 mitogen-activated protein kinase in 8-Cl-cAMP-induced growth inhibition. J Cell Physiol 2009, 218:104-112.
69.Lee YK, Park SY, Kim YM, Lee WS, Park OJ: AMP kinase/cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin. Exp Mol Med 2009, 41:201-207.
70.Alimova IN, Liu B, Fan Z, Edgerton SM, Dillon T, Lind SE, Thor AD: Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 2009, 8:909-915.
71.Liu B, Fan Z, Edgerton SM, Deng XS, Alimova IN, Lind SE, Thor AD: Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle 2009, 8.
72.Liu Z, Cao W: p38 mitogen-activated protein kinase: a critical node linking insulin resistance and cardiovascular diseases in type 2 diabetes mellitus. Endocr Metab Immune Disord Drug Targets 2009, 9:38-46.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊