跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.141) 您好!臺灣時間:2025/10/09 13:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許家駒
研究生(外文):CHIA-CHU HSU
論文名稱:嵌入支持向量回歸技術於小腦模型演算控制器與類化型小腦模型演算控制器
論文名稱(外文):Embedded Support Vector Regression on CMAC and CMAC-GBF Techniques
指導教授:莊鎮嘉莊鎮嘉引用關係
指導教授(外文):Chen-Chia Chuang
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:41
中文關鍵詞:小腦模型控制器類化型小腦模型控制器支持向量機支持向量回歸
外文關鍵詞:CMACCMAC-GBFSupport Vector MachineSupport Vector Regression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
在這份論文中,我們整合了CMAC (小腦模型控制器) 與SVR (支持向量回歸) 技術以發展一個更有效率與方法的架構,CMAC擁有一些引人注意的特性,它極快的學習能力與其特別的架構有利於我們有效的將它用於數位硬體的實現。SVR是一個基於統計學習定理的新式方法用來針對函數近似及回歸估測的問題;同時,SVR對於雜訊也顯露出不錯的強健特性。在論文中,我們結合SVM與CMAC (CMAC-GBF)來建構一個基於SVR的CMAC (CMAC-GBF)系統。模擬的結果我們可以發現它是一個高精確與高效率的系統,更重要的是基於SVR的CMAC (CMAC-GBF)系統在表現上優於單純的CMAC系統。
Abstract
In this thesis, we integrate the techniques of cerebellar model articulation controller (CMAC) and support vector regression (SVR) to develop a more efficient scheme. In general, CMAC has some attractive features. The most important ones are its extremely fast learning capability and the special architecture that lets effective digital hardware implementation as possible. On the other hand, a SVR is a novel method for tackling the problems of function approximation and regression estimation based on the statistical learning theory and has robust properties that against noise. In this thesis, we propose the SVR-based CMAC (CMAC-GBF) systems that combined by SVR and CMAC (CMAC-GBF) systems. From the results of simulation, the proposed structure has high accuracy and noise against. Besides, the experimental testing results demonstrate that the SVR-based CMAC (CMAC-GBF) systems outperform the original CMAC (CMAC-GBF) systems.
Contents
誌謝 i
摘要 ii
Abstract iii
Contents iv
List of Figure v
List of Table vii
Chapter 1 Introduction 1
Chapter 2 Overview of the CMAC and CMAC-GBF systems 5
2-1. Conventional Cerebellar Model Articulation Controller (CMAC) 5
2-2. Overview of the CMAC-GBF systems 7
Chapter 3 Embedded Support Vector Regression on CMAC and CMAC-GBF 10
3-1. Embedded Support Vector Regression (SVR) on CMAC 10
3-2. Embedded Support Vector Regression (SVR) on CMAC-GBF 13
Chapter 4 Simulation of SVR-CMAC and SVR based CMAC-GBF 17
4-1. Simulation Results for SVR-CMAC 17
4-2. Simulation Results for SVR based CMAC-GBF systems 27
Chapter 4 Conclusion 38
Reference 39
Reference

[1]J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller (CMAC),” ASME J. Dynam. Syst., Meas.,Contr., pp. 220–227, 1975.
[2]Thompson D.E. and Kwon S. "Neighbourhood Sequential and Random Training Techniques for CMAC". IEEE Trans. on Neural Networks, Vol. 6, pp. 196-202, 1995.
[3]J.-S. Ker, Y.-H. Kuo, R.-C. Wen Bin and D. Liu "Hardware Implementation of CMAC Neural Network with Reduced Storage Requirement". IEEE Transaction on Neural Networks, Vol. 8, no. 6, pp. 1545-1556, 1997.
[4]C. S. Lin and C. T. Chiang, “Learning convergence of CMAC Technique,” IEEE Trans. Neural Netw., vol. 8, no. 6, pp. 1281–1292, Nov. 1997.
[5]Y. F. Wong and A. Sideris, “Learning convergence in the cerebellar model articulation controller,” IEEE Trans. Neural Network, vol. 3, no. 1, pp. 115–121, Jan. 1992.
[6]Miller, T.W. III. Glanz, F.H. and Kraft, L.G. "CMAC: An Associative Neural Network Alternative to Backpropagation" Proceedings of the IEEE, Vol. 78, pp. 1561-1567, 1990
[7]C. S. Lin and C. K. Li, “A new neural network structure composed of small CMACs,” in Proc. IEEE Conf. Neural Systems, 1996, pp. 1777–1783.
[8]S. H. Lane and J. Militzer, “A comparison of five algorithm for the training of CMAC memories for learning control systems,” Int. Fed. Automat. Contr., vol. 28, no. 5, pp. 1027–1035, 1992.
[9]N. E. Cotter and T. J. Guillerm, “The CMAC and a theorem of kolmogorov,” Neural Networks, vol. 5, pp. 221–228, 1991.
[10]C. S. Lin and C. T. Chiang, “Learning convergence of CMAC Technique,” IEEE Trans. Neural Netw., vol. 8, no. 6, pp. 1281–1292, Nov. 1997.
[11]Y. F. Wong and A. Sideris, “Learning convergence in the cerebellar model articulation controller,” IEEE Trans. Neural Netw., vol. 3, no. 1, pp. 115–121, Jan. 1992.
[12]S. H. Lane, D. A. Handelman and J. Gelfand, "Theory and Development of Higher-Order CMAC Neural Networks", IEEE Control Systems, Vol. 2, Apr. pp. 23-30, 1992.
[13]H. M. Lee, C. M. Chen and Y. F. Lu, “A Self-Organizing HCMAC Neural-Network Classifier,” IEEE Trans. on Neural Networks, vol. 14. pp. 15-27. Jan. 2003.
[14]S. L. Hung and J. C. Jan, “MS_CMAC Neural Network Learning Model in Structural Engineering” Journal of Computing in Civil Engineering, pp. 1-11. Jan. 1999.
[15]Horváth, G. and Szabó, T.: "Kernel CMAC with Improved Capability" IEEE Trans. on Systems Man and Cybernetics, Part B. Accepted paper, 2006.
[16]Luis Weruaga and Barbara Kieslinger, “Tikhonov Training of the CMAC Neural Network,” IEEE Trans. on Neural Networks,vol. 17, no. 3, pp. 613-622, 2006.
[17]S. Mukherjee, E. Osuna, and F. Girosi, “Nonlinear prediction of chaotic time series using a support vector machine,” NNSP'97, pp. 24-26, 1997.
[18]J. A. K. Suykens, J. Vandewalle and B. D. Moor, “Optimal control by least squares support vector machines,” Neural Networks, vol. 14, no. 1, pp. 23-25, 2001.
[19]D. Mattera and S. Haykin, Support Vector Machines for Dynamic Reconstruction of a Chaotic System, in: B. Schölkopf, J. Burges, A. Smola, ed., Advances in Kernel Methods: Support Vector Machine, MIT Press, 1999.
[20]V. Cherkarsky and Y. Ma, "Practical selection of SVM parameters and noise estimation for SVM regression," Neural Networks, vol. 17, no. 1, pp.113-126, 2004.
[21]J. T. Jeng and C. C. Chuang, “A Novel Approach for the Hyperparameters of Support Vector Regression,” 2002 International Joint Conference on Neural Networks.
[22]V. Cherkassky and F. Mulier, Learning from Data: Concepts, Theory, and Methods, John Wiley & Sons, 1998.
[23]J.T. Kwok, Linear Dependency between and the Input Noise in –Support Vector Regression, International Conference on Artificial Neural Networks (ICANN), pp. 405-410, 2001.
[24]J. T. Jeng, C. C. Chuang, and S. F. Su, “Support vector interval regression networks for interval regression analysis,” Fuzzy Set and Systems, vol. 138, vo. 2, pp. 283-300, 2003.
[25]D. Mattera and S. Haykin, Support Vector Machines for Dynamic Reconstruction of a Chaotic System, in: B. Schölkopf, J. Burges, A. Smola, ed., Advances in Kernel Methods: Support Vector Machine, MIT Press, 1999.
[26]V. N. Vapnik, The nature of statistical learning theory, Springer, 1995.
[27]C. S. Lin and C. T. Chiang, “CMAC with General Basis Functions,” Journal of Neural Networks, Vol. 9, No. 7, Oct. 1996. pp. 1199-1211.
[28]V. N. Vapnik, Statistical Learning Theory, Wiley, New York, 1988.
[29]G. Horváth and T. Szabó, “Kernel CMAC with Improved Capability,” IEEE Trans. on Systems Man and Cybernetics, Part B, Accepted paper, 2006.
[30]Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines, 2005, software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊