[1] 金光明, “高壓Double RESURF LDMOS器件設計與工藝模擬,” 碩士論文, 南通大學, (2008).
[2] I. Y. Park, Y. K. Choi, K.Y. Ko, C. J. Yoon, B. K. Jun, M. Y. Kim, H. C. Lim, N. J. Kim, and K. D. Yoo, “BD180-a new 0.18 µm BCD (Bipolar-CMOS-DMOS) Technology from 7V to 60V,” Proceedings of the 20th International Symposium on Power Semiconductor Devices and IC's,” pp. 64-67, Orlando FL, USA (2008).
[3] A. Parpia, and C. A. T. Salama, “Optimization of RESURF LDMOS Transistors: An Analytical Approach,” IEEE Transaction on Electron Devices. 37.3, pp. 789-796, (1990).
[4] C. Contiero, A. Andreini, and P. Galbiati, “Roadmap Differentiation and Emerging Trends in BCD Technology,” Proceeding of the 32nd European Solid-State Device Research Conference, pp. 275-282, Firenze, Italy (2002).
[5] K. Kawamoto, and S. Takahashi, “An Advanced No-Snapback LDMOSFET with Optimized Breakdown Characteristics of Drain n-n+ Diodes,” IEEE Transaction on Electron Devices, 51.9, pp. 1432-1440 (2004).
[6] P. Wessels, M. Swanenberg, H. van Zwol, B. Krabbenborg, H. Boezen, M. Berkhout, and A. Grakist, “Advanced BCD technology for automotive, audio and power applications,” Solid-State Electronics, 51.2, pp. 195-211, Elsevier, Amsterdam, Netherlands (2007).
[7] R. Rudolf, C. Wagner, L. O'Riain, K. H. Gebhardt, B. Kuhn-Heinrich, B. von Ehrenwall, A. von Ehrenwall, M. Strasser, M. Stecher, U. Glaser, S. Aresu, P. Kuepper, and A. Mayerhofer, “Automotive 130nm Smart-Power-Technology including embedded Flash Functionality,” Proceedings of the 23rd International Symposium on Power Semiconductor Devices and ICs, pp. 20-23, San Diego, California, USA (2011).
[8] H. Tomita, H. Eguchi, S. Kijima, N. Honda, T. Yamada, H. Yamawaki, H. Aoki, and K. Hamada, “Wide-Voltage SOI-BiCDMOS Technology for High-Temperature Automotive Applications,” Proceedings of the 23rd International Symposium on Power Semiconductor Devices and ICs, pp. 28-31, San Diego, California, USA (2011).
[9] Y. Hao, P. C. Sim, B. Toner; M. Frank, M. Ackermann, A. Tan, U. Kuniss, E. Kho, J. Doblaski, E. G. Hee, M. Liew, A. Hoelke, S. Wada, and T. Oshima, “A 0.18μm SOI BCD technology for automotive application,” Proceedings of the 27th International Symposium on Power Semiconductor Devices and IC's, pp. 177-180, Hong Kong, China (2015).
[10] 陳志勇, 黃其煜, 龔大衛, “BCD工藝概述,” 半導體技術, 第31卷第9期, pp. 641-644, 河北省石家莊市, 中國 (2006).
[11] I. Y. Park, Y. K. Choi, K. Y. Ko, S. C. Shim, B. K. Jun, N. C. Moon, N. J. Kim, K. D. Yoo, “BCD (Bipolar-CMOS-DMOS) Technology Trends for Power Management IC,” Proceedings of the 8th International Conference on Power Electronics and ECCE Asia, pp. 318-325, Jeju South, Korea (2011).
[12] B. Murari, F. Bertotti, G A. Vignola, Smart Power ICs: Technologies and Applications, 2nd edition, Springer Science & Business Media, New York, USA (2002).
[13] B. J. Baliga, Modern Power Devices, Wiley, New York, USA (1987).
[14] P. Moens and G. Van Den Bosch, “Characterization of Total Safe Operating Area of Lateral DMOS Transistors,” IEEE Transactions on Device and Materials Reliability, 6.3, pp.349-357 (2006).
[15] Synopsys Inc., “Sentaurus TCAD, Industry-Standard Process and Device Simulators,” Mountain View, California, USA (2012).
[16] H. Ballan, “High-Voltage CMOS and Scaling Trends,” Proceedings of the Electrochemical Society, 2003, pp. 6, Pennington, New Jersey, USA (2003).
[17] B. J. Baliga, “Trends in Power Semiconductor Devices,” IEEE Transaction on Electron Devices, 43.10, pp. 1717-1731 (1996).
[18] H. Zitta, “Smart Power Integrated Circuits,” UNSECO-encyclopedia of life support system (EOLSS) (2013).
[19] A. Emadi, Advanced Electric Drive Vehicles, Chemical Rubber Company (CRC), Boca Raton, Florida, USA (2014).
[20] M. T Thompson, “Notes 01 Introduction to Power Electronics,” Thompson Consulting, Inc. Marion, USA (2005).
[21] B. Kumar, and S. B. Jain, Electronic Devices and Circuits, PHI Learning Pvt. Ltd., Delhi, India (2014).
[22] J. H. Krenz, Electronic Concepts-An Introduction, Cambridge University Press., Cambridge, England (2000).
[23] R. G. Hoft, Semiconductor Power Electronics, Springer Science & Business Media., New York, USA (2012).
[24] Euzeli dos Santos, and E. R. da Silva, Advanced Power Electronics Converters: PWM Converters Processing AC Voltages, Wiley, New York, USA (2015).
[25] Kharagpur, Power Semiconductor Devices, Module 1, Version 2 EE IIT (Indian Institute of Technology Kanpur), Kharagpur, India (2012).
[26] M. Cirstea, A. Dinu, M. McCormick, and J. G. Khor, Neural and Fuzzy Logic Control of Drives and Power Systems, Newnes, Oxford, United Kingdom (2002).
[27] H. Wang, “Power MOSFETs with Enhanced Electrical Characteristics,” Ph. D. Dissertation, University of Toronto, (2009).
[28] B. J. Baliga, “An Overview of Smart Power Technology,” IEEE Transaction on Electron Devices, 38.7, pp. 1568-1575 (1991).
[29] F. E. Holmes, and C.A.T. Salama, “VMOS-A New MOS Technology,” Solid-State Electron, 17.8, pp. 791-797, Elsevier, Amsterdam, Netherlands (1974).
[30] V. A. K. Temple, and P. V. Gray, “Theoretical Comparison of DMOS and VMOS Structures for Voltage and On-resistance,” Proceedings of the International Electron Devices Meeting, 25, pp. 88-92, Washington DC, USA (1979).
[31] D. Ueda, H. Takagi, and G. Kano, “A New Vertical Power MOSFET Structure with Extremely Reduced On-resistance,” IEEE Transactions on Electron Devices, 32.1, pp. 2-6 (1985).
[32] S. C. Sun, and J. D. Plummer, “Modeling the On-resistance of LDMOS, VDMOS and VMOS Power Transistor,” IEEE Transaction on Electron Devices, 27.2, pp. 356-367 (1980).
[33] 陸鑫, “利用TCAD軟件優化兼容於BCD工藝的LDMOS結構,” 碩士論文, 上海交通大學微電子學院, (2010).
[34] P. M. Holland, and P. M. Igic. “An alternative process architecture for CMOS based high side RESURF LDMOS transistors,” Proceedings of the 25th International Conference on Microelectronics, pp. 195-198, University of Nis, Serbia (2006).
[35] U. Radhakrishna, A. DasGupta, N. DasGupta, and A. Chakravorty, “Modeling of SOI-LD MOS Transistor Including Impact Ionization, Snapback, and Self-Heating,” IEEE Transactions on Electron Devices, 58.11, pp. 4035-4041 (2011).
[36] T. Lekshmi, A. K. Mittal, A. DasGupta, A. Chakravorty, and N. DasGupta, “Compact Modeling of SOI-LDMOS Including Quasi-Saturation Effect,” Proceedings of the 2nd International Workshop on. Electron Devices and Semiconductor Technology, pp. 1-4, Mumbai, India (2009).
[37] M. J. Swanenberg, and W. J. Kloosterman, “Modeling of High Voltage SOI-LDMOS Transistor including self-heating,” In Simulation of Semiconductor Processes and Devices. pp. 246-249, Springer Vienna, New York, USA (2001).
[38] M. Tachimori, “SIMOX Waters (Silicon waters with a thin superficial silicon film separated.” Nippon steel technical report, No. 73 (1997).
[39] S. Bengtsson. “Wafer bonding and smartcut for formation of silicon-on-insulator materials,” Proceedings of the 5th International Conference on Solid-State and Integrated Circuit Technology, pp. 745-748, Beijing, China (1998)
[40] H. Mendez, “Silicon-on-insulator - SOI technology and ecosystem - Emerging SOI applications,” SOI Industry Consortium, (2009).
[41] H. Yamaguchi, H. Himi, H. Fujino and T. Hattori, “Intelligent power IC with partial SOI structure,” Japanese Journal of Applied Physics, 34, pp. 864, Tokyo, Japan (1995).
[42] J. P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI , 3rd edition Springer Science & Business Media, Boston, USA (2004).
[43] F. Udrea, “SOI-based devices and technologies for High Voltage ICs,” Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), pp. 74-81, Boston, USA (2007).
[44] Synopsys. Inc., “Sentaurus Device User Guide, Version D-2010.03,” Mountain View, California, USA (2010).
[45] A. U. Kashif, "Optimization of LDMOS Transistor in Power Amplifiers for Communication Systems," Ph. D. Dissertation, Linköpings Universitet, Sweden, (2010).
[46] H. Matthew. “Semiconductor TCAD Fabrication Development for BCD Technology”. Ph. D. Dissertation, Worcester Polytechnic Institute, (2006).
[47] Synopsys Inc., “Sentaurus device simulator (release D-2010.03),” Mountain View, California, USA (2010).
[48] J. A. Appels and H. M. J. Vaes, "High-Voltage Thin Layer Devices (RESURF DEVICES)," Proceedings of the International Electron Devices Meeting, 25, pp. 238-241, Washington D.C , USA (1979).
[49] M. F. Chang, G. Pifer, H. Yilmaz, E. J. Wildi, R. G. Hodgins, K. Owyang, and M. S. Adler, "Lateral HVIC with 1200-V Bipolar and Field-Effect Devices," IEEE Transactions on Electron Devices, 33.12, pp. 1992-2001 (1986).
[50] A. W. Ludikhuize, “A review of RESURF technology,” Proceedings of Power Semiconductor Devices and ICs, Proceedings of the 12th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp.11-18, Toulouse, France (2000).
[51] J. L. Sanchez, M. Gharbi, H. Tranduc, and P. Rossel, “Quasi-saturation Effect in High Voltage VDMOS Transistors," IEE Proceedings I-Solid-State and Electron Devices, 132.1, pp. 42-46 (1985).
[52] M. N. Darwish, “Study of the Quasi-Saturation Effect in VDMOS Transistors,” IEEE Transactions on Electron Devices, 33.11, pp. 1710-1716 (1986).
[53] A. A. Orouji, and M. Mehrad, “The Best Control of Parasitic BJT Effect in SOI-LDMOS With SiGe Window Under Channel,” IEEE Transactions on Electron Devices, 59.2, pp. 419-425 (2012).
[54] U, Radhakrishna, “Compact Modeling of SOI-LDMOS Transistor including Impact Ionization, Snapback and Self Heating,” Ph. D. Dissertation, Indian Institute of Technology Madras, (2001).
[55] 潘俊廷, “SOI 功率元件分析,” 碩士論文, 逢甲大學, (2002).[56] J. M. Park, “Novel Power Devices for Smart Power Applications,” Ph. D. Dissertation, University of Vienna, (2004).
[57] A. Resfa, B. R. Menezla, and M. Benchhima, “Simulating and modeling the breakdown voltage in a semi-insulating GaAs P+N junction diode,” Journal of Semiconductors, 35.8: 084002, Beijing, China, (2014).
[58] V. Anantharam, and K.N Bhat. “Analytical Solutions for the Breakdown Voltages of Punched-Through Diodes Having Curved Junction Boundaries at the Edges,” IEEE Transaction on Electron Devices, 27.5, pp. 939-945 (1980).
[59] B. J. Baliga, Fundamentals of Power Semiconductor Devices, 2nd edition, Springer Science & Business Media, New York, USA (2010)
[60] B. J. Baliga, Modern Power Devices, 1st edition, Wiley, New York, USA (1987).
[61] A. S. Grove, O. Leistiko, and W. W. Hooper, “Effect of surface fields on the breakdown voltage of planar silicon p-n junctions,” IEEE Transaction on Electron Devices, 14.3, pp. 157-162 (1967).
[62] H. A. Schafft, “Second Breakdown–A Comprehensive Review,” Proceedings of the IEEE, 55.8, pp.1272-1288 (1967).
[63] B. El-Kareh, and R. J. Bombard, Introduction to VLSI Silicon devices, Physics Technology and characterization, 2nd edition, Kluwer Academics publishers, Boston, USA (1986).
[64] H. Ballan, and M. Declerq, High voltage devices and circuits in standard CMOS technologies, Springer Science & Business Media, Boston, USA (1999).
[65] J. A. Appels, and H. M. J. Vaes, “HV Thin Layer Devices (RESURF Devices),” Proceedings of the International Electron Devices Meeting, 25, pp. 238-241, Washington DC, USA (1979).
[66] H. J. Sigg, G. D. Vendelin, T. P. Cauge, and J. Kocsis, “D-MOS transistor for microwave applications,” IEEE Transactions on Electron Devices, 19.1, pp. 45-53 (1972).
[67] A. Asif, “Laterally Diffused Metal Oxide Semiconductor Transistor on Ultra-thin Single-crystalline Silicon,” Ph. D. Dissertation, University of Stuttgart, (2011).
[68] K. Sung, and T. Won. “High-side N-channel LDMOS for a High Breakdown Voltage,” Journal of the Korean Physical Society, 58.5, pp. 1411-1416 (2011).
[69] G. S. May, and S. M. Sze, Fundamentals of Semiconductor Fabrication, Wiley, New Jersey, USA ( 2003).
[70] P. M. Holland, T. K. H. Starke; S. Hussain; W. M. Jamal, P. A. Mawby, and P. M. Igic. “Novel 2-D RESURF LDMOSFET in 0.6µm CMOS Technology for Power ICs,” Proceedings of the 24th International Conference on Microelectronics, 1, pp. 133-136, NiS, Serbia (2004).
[71] J. A. Appels, M. Collet, P. Hart, H. Vaes, and J. Verhoeven, “Thin layer high voltage devices (RESURF DEVICES),” 35.1, pp. 1-13, Philips Journal of Research (1980).
[72] M. Amato, and V. Rumennik, “Comparison of lateral and vertical DMOS specific on-resistance,” Proceedings of the International Electron Devices Meeting, 31, pp. 736-739, Washington DC, USA (1985).
[73] T. Efland, S. Malhi, W. Bailey, O.K. Kwon, and W.T. Ng, “An Optimized RESURF LDMOS Power Device Module Compatible with Advanced Logic Processes,” Proceedings of the International Electron Devices Meeting, pp.237-240, San Francisco CA, USA (1992).
[74] Y. S. Huang, and B. J. Baliga, “Extension of RESURF principle to directly isolated power device,” Proceedings of the 3rd International Symposium on Power Semiconductor Devices and ICs, pp. 27-30, Baltimore Maryland, USA (1991).
[75] 富力文, 閻力大, “RESURF原理應用於SOI LDMOS晶體管,” 半導體學報, 17.4, pp. 283-288, 北京, 中國 (1996).
[76] A. Popescu, F. Udrea, and W. Milne, “A numerical study of the RESURF effect in bulk and SO1 power devices,” Proceedings of the International Semiconductor Conference, 1, pp. 127-130, Sinaia, Romania (1997).
[77] J. He, X. Xi, M. Chan, C. Hu, Y. Li, Z. Xing, and R. Huang, "Linearly graded doping drift region: a novel lateral voltage-sustaining layer used for improvement of RESURF LDMOS transistor performances," Semiconductor science and technology, 17.7, pp. 721, Bristol, United Kingdom (2002).
[78] G. Shan, C. Junning, K. Daoming, and F. Miao,“Analysis of Self-heating Effect and Breakdown Characteristics in Partial SOI LDMOS with Multi Silicon Windows,” Proceedings of the 7th International Conference on ASIC, pp. 1237,-1240, Guilin, China (2007).
[79] E. Arnold, “Silicon-on-Insulator Devices for High Voltage and Power IC Applications,” Journal of The Electrochemical Society, 141.7, pp. 1983-1988 (1994).
[80] X. Luo, X. Wang, G. Hu, Y. Fan, K. Zhou, Y. Luo, Y. Fan, Z. Zhang, Y. Mei, and B. Zhang. "Experimental and theoretical study of an improved breakdown voltage SOI LDMOS with a reduced cell pitch," Journal of Semiconductors, 35.2: 024007, Beijing, China (2014).
[81] 孟堅, 高珊, 陳軍寧, 柯導明, 孫偉鋒, 時龍興, 徐超.“用阱作高阻漂移區的LDMOS 導通電阻的解析模型,”半導體學報, 26.10, pp. 1983-1988, 北京, 中國 (2005).
[82] P. Dey, A. Rafique, S. Adhikari, S. Ghosal, S. Biswas, S. Das, K. Choudhary, A. Biswas, A. K. Bandyopadhyay, and S. Mandal. "AN SOI LDMOS FOR BETTER SWITCH APPLICATION INCREASING THE DRIFT REGION OF AN N-MOS: A COMPARATIVE STUDY," Journal of Electron Devices, 14, pp. 1142-1150, Beirut, Lebanon (2012).
[83] Y. K. Leung, A. K. Paul, K. E. Goodson, J. D. Plummer, and S. S. Wong, “Heating Mechanisms of LDMOS and LIGBT in Ultrathin SOI,” IEEE Electron Device Letters, 18.9, pp. 414-416 (1997).
[84] Q. Qian, W. Sun, J. Zhu, and L. Shi, “Investigation of the shift of hotspot in lateral diffused LDMOS under ESD conditions,” Microelectronics reliability, 50.12, pp. 1935-1941. Elsevier, Amsterdam, Netherlands (2010).
[85] M. J. Swanenberg and W. J. Kloosterman, “Modelling of High-Voltage SOI-LDMOS Transistors including Self-Heating,” Simulation of Semiconductor Processes and Devices, Springer Vienna, New York, USA (2001).
[86] Z. Lun, G. Du, J. Qin, Y. Wang, J. Wang, and X. Liu, “Investigation of Self-heating Effect in SOI-LDMOS by Device Simulation,” Proceedings of the 11th International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1-3, Xi’an, China (2012).
[87] J. Roig, D. Flores, S. Hidalgo, M. Vellvehi, J. Rebollo, and J. Millian, “Study of novel techniques for reducing self-heating effects in SOI power LDMOS,” Solid-State Electronics, 46.12, pp 2123-2133, Elsevier, Amsterdam, Netherlands (2002).
[88] P. L. Hower, "Safe Operating Area: A New Frontier in LDMOS Design,” Proceedings of the 14th International Symposium on Power Semiconductor Devices and ICs, pp. 1 (2002).
[89] Synopsys Inc., “Sentaurus Technology Template: LDMOS Processing,” Mountain View, California, USA (2007).
[90] M. S. Sulong, A. A. Jamry, S. M. S. Shuib, R. Sanudin, M. Morsin, and M. Z. Sahdan,“Process and Device Simulation of 80nm CMOS Inverter Using Sentaurus Synopsys TCAD,” Proceedings of the FEIIC Symposium on Engineering and Technology, pp. 427-432, Kuching, Sarawak, Malaysia (2008).
[91] V. Parthasarathy, R. Zhu, V. Khemka, T. Roggenbauer, A. Bose, P. Hui, P. Rodriquez, J. Nivison, D. Collins, Z. Wu, I. Puchades, and M. Butner, "A 0.25μm CMOS based 70V smart power technology with deep trench for high-voltage isolation,” Proceedings of the International Electron Devices Meeting, pp. 459-462, San Francisco, CA, USA (2002).
[92] N. H. Kim, H. Y. Yoo and E. G. Changa, "Dislocation-Free Shallow Trench Isolation (STI) Chemical Mechanical Polishing (CMP) Process for Embedded Flash Memory,” Solid State Phenomena, 124, pp. 29-32, Trans Tech Publications, Pfaffikon, Switzerland (2007).
[93] X. Cao, D. Nicholson, W.A. Nevin, and J. Knopke. “Control of Crystalline Defects in Trench Isolated Thick Film SOI for High Voltage Smart Power ICs,” Crystalline Defects and Contamination: Their Impact and Control in Device Manufacturing III : DECON 2001 : Proceedings of the Satellite Symposium to ESSDERC 2001, Nuremberg, Germany, 2001, pp. 103, Electrochemical Society, Erlangen, Germany (2001).
[94] A. Raman, D. G. Walker, and T. S. Fisher, “Simulation of nonequilibrium thermal effects in power LDMOS transistors,” Solid-State Electronics, 47.8, pp. 1265-1273, Elsevier, Amsterdam, Netherlands (2003).
[95] A Aminbeidokhti, A. A. Orouji, S. Rahmaninezhad, and M. Ghasemian, “A Novel High-Breakdown-Voltage SOI MESFET by Modified Charge Distribution,” IEEE Transactions on Electron Devices, 59.5, pp. 1255-1262 (2012).
[96] A. C. T. Aarts, and W. J. Kloosterman, “Compact Modeling of High-Voltage LDMOS Devices Including Quasi-Saturation,” IEEE Transactions on Electron Devices, pp. 53.4, pp. 897 (2006).
[97] N. Prasad, P. Sarangapani, K. N. S. Nikhil, N DasGupta, A. DasGupta and A. Chakravorty, “An Improved Quasi-Saturation and Charge Model for SOI-LDMOS Transistors,” IEEE Transactions on Electron Devices, 62.3, pp. 919-926 (2015).
[98] W. Lie, and S. Yang “Analysis and modeling of quasi-saturation effect in high-voltage LDMOS transistors,” Acta Physica Sinica, 59.1, pp. 571-578, Beijing, China (2010).
[99] O. Triebl, “Reliability Issues in High-Voltage Semiconductor Devices,” Ph. D. Dissertation, University of Vienna, (2012).
[100] K Pradeep, “Exploring the Nano-Scale Self-Heating Mechanisms in SOI/Bulk MOS Devices,” Ph. D. Dissertation, École Polytechnique Fédérale de Lausanne, (2015).
[101] E. Pop, S. Sinha, and K.E. Goodson, “Heat Generation and Transport in Nanometer-Scale Transistors,” Proceedings of the IEEE, 94.8, pp. 1587-1601 (2006).
[102] Y. G. Chen, S. Y. Ma, J. B. Kuo, Z. Yu, and R. W. Duton, “An Analytical Drain Current Model Considering Both Electron and Lattice Temperatures Simultaneously for Deep Submicron Ultrathin SO1 NMOS Devices with Self-Heating,” IEEE Transactions on Electron Devices, 42.5, pp. 899-906 (1995).
[103] C. Anghel, A. M. Ionescu, N. Hefyene, and R. Gillon, "Self-Heating Characterization and Extraction Method for Thermal Resistance and Capacitance in High Voltage MOSFETs," Proceedings of the 33rd European Solid-State Device Research Conference (ESSDERC), pp. 449-452, Estoril, Portugal (2003).
[104] W. Jin, , W. Liu, S. K. Fung, P. C. Chan, and C. Hu, "SOI Thermal Impedance Extraction Methodology and Its Significance for Circuit Simulation," IEEE Transactions on Electron Devices, 48.4, pp. 730-736 (2001).
[105] I. Cortes, P. Fernandez-Martinez, D. Flores, S. Hidalgo, and J. Rebollo, "Punch-through Effects in RF Bulk LDMOS Transistors," Proceedings of the Spanish Conference on Electron Devices (SCED), pp. 344-347, Madrid, Spain (2007).
[106] G. Shahidi, A. Ajmera, F. Assaderaghi, R. Bolam, A. Bryant, M. Coffey, H. Hovel, J. Lasky, E. Leobandung, H.-S. Lo, M. Maloney, D. Moy, W. Rausch, D. Sadana, D. Schepis, M. Sherony, J.W. Sleight, L. F. Wagner, K. Wu, B. Davari, and T. C. Chen, “Mainstreaming of the SOI technology,” Proceedings of the IEEE International SOI Conference, pp. 1-4, Rohnert Park, California, USA (1999).