|
1. Waldburger, C., D. Gonzalez, and G.H. Chambliss, Characterization of a new sporulation factor in Bacillus subtilis. J Bacteriol, 1993. 175(19): p. 6321-7. 2. Grossman, A.D., Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu Rev Genet, 1995. 29: p. 477-508. 3. Moir, A., Bacterial spore germination and protein mobility. Trends Microbiol, 2003. 11(10): p. 452-4. 4. Kunst, F., et al., The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 1997. 390(6657): p. 249-56. 5. Kobayashi, K., et al., Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A, 2003. 100(8): p. 4678-83. 6. Tanner, J.J., Structural biology of proline catabolism. Amino Acids, 2008. 35(4): p. 719-30. 7. Buxton, R.S., Selection of Bacillus subtilis 168 mutants with deletions of the PBSX prophage. J Gen Virol, 1980. 46(2): p. 427-37. 8. Ogura, M., et al., Multiple copies of the proB gene enhance degS-dependent extracellular protease production in Bacillus subtilis. J Bacteriol, 1994. 176(18): p. 5673-80. 9. Belitsky, B.R., et al., Multiple genes for the last step of proline biosynthesis in Bacillus subtilis. J Bacteriol, 2001. 183(14): p. 4389-92. 10. Hahn, J., et al., Characterization of comE, a late competence operon of Bacillus subtilis required for the binding and uptake of transforming DNA. Mol Microbiol, 1993. 10(1): p. 99-111. 11. Kempf, B. and E. Bremer, Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol, 1998. 170(5): p. 319-30. 12. Measures, J.C., Role of amino acids in osmoregulation of non-halophilic bacteria. Nature, 1975. 257(5525): p. 398-400. 13. Sans, N., U. Schindler, and J. Schroder, Ornithine cyclodeaminase from Ti plasmid C58: DNA sequence, enzyme properties and regulation of activity by arginine. Eur J Biochem, 1988. 173(1): p. 123-30. 14. Baumberg, S. and C.R. Harwood, Carbon and nitrogen repression of arginine catabolic enzymes in Bacillus subtilis. J Bacteriol, 1979. 137(1): p. 189-96. 15. Gardan, R., G. Rapoport, and M. Debarbouille, Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis. J Mol Biol, 1995. 249(5): p. 843-56. 16. Atkinson, M.R., L.V. Wray, Jr., and S.H. Fisher, Regulation of histidine and proline degradation enzymes by amino acid availability in Bacillus subtilis. J Bacteriol, 1990. 172(9): p. 4758-65. 17. Adams, E., Metabolism of proline and of hydroxyproline. Int Rev Connect Tissue Res, 1970. 5: p. 1-91. 18. Bearne, S.L. and R. Wolfenden, Glutamate gamma-semialdehyde as a natural transition state analogue inhibitor of Escherichia coli glucosamine-6-phosphate synthase. Biochemistry, 1995. 34(36): p. 11515-20. 19. Tsuge, H., et al., Crystal structure of a novel FAD-, FMN-, and ATP-containing L-proline dehydrogenase complex from Pyrococcus horikoshii. J Biol Chem, 2005. 280(35): p. 31045-9. 20. Becker, D.F. and E.A. Thomas, Redox properties of the PutA protein from Escherichia coli and the influence of the flavin redox state on PutA-DNA interactions. Biochemistry, 2001. 40(15): p. 4714-21. 21. Menzel, R. and J. Roth, Regulation of the genes for proline utilization in Salmonella typhimurium: autogenous repression by the putA gene product. J Mol Biol, 1981. 148(1): p. 21-44. 22. Vilchez, S., M. Manzanera, and J.L. Ramos, Control of expression of divergent Pseudomonas putida put promoters for proline catabolism. Appl Environ Microbiol, 2000. 66(12): p. 5221-5. 23. Muro-Pastor, A.M., P. Ostrovsky, and S. Maloy, Regulation of gene expression by repressor localization: biochemical evidence that membrane and DNA binding by the PutA protein are mutually exclusive. J Bacteriol, 1997. 179(8): p. 2788-91. 24. Brown, E.D. and J.M. Wood, Redesigned purification yields a fully functional PutA protein dimer from Escherichia coli. J Biol Chem, 1992. 267(18): p. 13086-92. 25. Fisher, S.H. and A.L. Sonenshein, Bacillus subtilis glutamine synthetase mutants pleiotropically altered in glucose catabolite repression. J Bacteriol, 1984. 157(2): p. 612-21. 26. Belitsky, B.R. and A.L. Sonenshein, Modulation of activity of Bacillus subtilis regulatory proteins GltC and TnrA by glutamate dehydrogenase. J Bacteriol, 2004. 186(11): p. 3399-407. 27. Matsuoka, H., K. Hirooka, and Y. Fujita, Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation. J Biol Chem, 2007. 282(8): p. 5180-94. 28. Yamane, K., M. Kumano, and K. Kurita, The 25 degrees-36 degrees region of the Bacillus subtilis chromosome: determination of the sequence of a 146 kb segment and identification of 113 genes. Microbiology, 1996. 142 ( Pt 11): p. 3047-56. 29. Glaser, P., et al., Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325 degrees to 333 degrees. Mol Microbiol, 1993. 10(2): p. 371-84. 30. Sonenshein, A.L., Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol, 2007. 5(12): p. 917-27. 31. Gutowski, J.C. and H.J. Schreier, Interaction of the Bacillus subtilis glnRA repressor with operator and promoter sequences in vivo. J Bacteriol, 1992. 174(3): p. 671-81. 32. Wray, L.V., Jr., et al., TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis. Proc Natl Acad Sci U S A, 1996. 93(17): p. 8841-5. 33. Fisher, S.H., Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference! Mol Microbiol, 1999. 32(2): p. 223-32. 34. Belitsky, B.R., P.J. Janssen, and A.L. Sonenshein, Sites required for GltC-dependent regulation of Bacillus subtilis glutamate synthase expression. J Bacteriol, 1995. 177(19): p. 5686-95. 35. Bohannon, D.E., M.S. Rosenkrantz, and A.L. Sonenshein, Regulation of Bacillus subtilis glutamate synthase genes by the nitrogen source. J Bacteriol, 1985. 163(3): p. 957-64. 36. Henkin, T.M., The role of CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis. FEMS Microbiol Lett, 1996. 135(1): p. 9-15. 37. Moreno, M.S., et al., Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol, 2001. 39(5): p. 1366-81. 38. Fujita, Y., et al., Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol, 1995. 17(5): p. 953-60. 39. Galinier, A., et al., The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc Natl Acad Sci U S A, 1997. 94(16): p. 8439-44. 40. Ramseier, T.M., et al., In vitro binding of the CcpA protein of Bacillus megaterium to cis-acting catabolite responsive elements (CREs) of gram-positive bacteria. FEMS Microbiol Lett, 1995. 129(2-3): p. 207-13. 41. Shivers, R.P. and A.L. Sonenshein, Bacillus subtilis ilvB operon: an intersection of global regulons. Mol Microbiol, 2005. 56(6): p. 1549-59. 42. Lulko, A.T., et al., Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. J Mol Microbiol Biotechnol, 2007. 12(1-2): p. 82-95. 43. Shivers, R.P. and A.L. Sonenshein, Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol Microbiol, 2004. 53(2): p. 599-611. 44. Molle, V., et al., Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J Bacteriol, 2003. 185(6): p. 1911-22. 45. Serror, P. and A.L. Sonenshein, CodY is required for nutritional repression of Bacillus subtilis genetic competence. J Bacteriol, 1996. 178(20): p. 5910-5. 46. Inaoka, T. and K. Ochi, RelA protein is involved in induction of genetic competence in certain Bacillus subtilis strains by moderating the level of intracellular GTP. J Bacteriol, 2002. 184(14): p. 3923-30. 47. Lopez, J.M., A. Dromerick, and E. Freese, Response of guanosine 5'-triphosphate concentration to nutritional changes and its significance for Bacillus subtilis sporulation. J Bacteriol, 1981. 146(2): p. 605-13. 48. Ratnayake-Lecamwasam, M., et al., Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev, 2001. 15(9): p. 1093-103. 49. Guedon, E., et al., Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis. Mol Microbiol, 2001. 40(5): p. 1227-39. 50. Jarmer, H., et al., Transcriptome analysis documents induced competence of Bacillus subtilis during nitrogen limiting conditions. FEMS Microbiol Lett, 2002. 206(2): p. 197-200. 51. Slack, F.J., et al., A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Mol Microbiol, 1995. 15(4): p. 689-702. 52. Fisher, S.H., K. Rohrer, and A.E. Ferson, Role of CodY in regulation of the Bacillus subtilis hut operon. J Bacteriol, 1996. 178(13): p. 3779-84. 53. Liebs, P., et al., Formation of some extracellular enzymes during the exponential growth of Bacillus subtilis. Folia Microbiol (Praha), 1988. 33(2): p. 88-95. 54. Hightower, L.E., Stress Proteins In Biology and Medicine. Richard I. Morimoto, Alfred Tissieres, and Costa Georgopoulos, Eds. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 1990. x, 450 pp., illus. $97. Cold Spring Harbor Monograph Series 19. Science, 1990. 249(4968): p. 572-573. 55. Volker, U., et al., Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology, 1994. 140 ( Pt 4): p. 741-52. 56. Hecker, M., W. Schumann, and U. Volker, Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol, 1996. 19(3): p. 417-28. 57. Price, C.W., et al., Genome-wide analysis of the general stress response in Bacillus subtilis. Mol Microbiol, 2001. 41(4): p. 757-74. 58. Boylan, S.A., et al., Stress-induced activation of the sigma B transcription factor of Bacillus subtilis. J Bacteriol, 1993. 175(24): p. 7931-7. 59. Benson, A.K. and W.G. Haldenwang, The sigma B-dependent promoter of the Bacillus subtilis sigB operon is induced by heat shock. J Bacteriol, 1993. 175(7): p. 1929-35. 60. Volker, U., B. Maul, and M. Hecker, Expression of the sigmaB-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis. J Bacteriol, 1999. 181(13): p. 3942-8. 61. Csonka, L.N. and A.D. Hanson, Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol, 1991. 45: p. 569-606. 62. Hoffmann, T., et al., Responses of Bacillus subtilis to hypotonic challenges: physiological contributions of mechanosensitive channels to cellular survival. Appl Environ Microbiol, 2008. 74(8): p. 2454-60. 63. Chen, M., et al., Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol, 2007. 40(3): p. 396-403. 64. Burg, M.B., E.D. Kwon, and D. Kultz, Regulation of gene expression by hypertonicity. Annu Rev Physiol, 1997. 59: p. 437-55. 65. Miller, K.J. and J.M. Wood, Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol, 1996. 50: p. 101-36. 66. Whatmore, A.M. and R.H. Reed, Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J Gen Microbiol, 1990. 136(12): p. 2521-6. 67. Whatmore, A.M., J.A. Chudek, and R.H. Reed, The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol, 1990. 136(12): p. 2527-35. 68. Kappes, R.M., B. Kempf, and E. Bremer, Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J Bacteriol, 1996. 178(17): p. 5071-9. 69. Kempf, B. and E. Bremer, OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. J Biol Chem, 1995. 270(28): p. 16701-13. 70. Lin, Y. and J.N. Hansen, Characterization of a chimeric proU operon in a subtilin-producing mutant of Bacillus subtilis 168. J Bacteriol, 1995. 177(23): p. 6874-80. 71. Boch, J., B. Kempf, and E. Bremer, Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J Bacteriol, 1994. 176(17): p. 5364-71. 72. Peng, Z., Q. Lu, and D.P. Verma, Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol Gen Genet, 1996. 253(3): p. 334-41. 73. Wengender, P.A. and K.J. Miller, Identification of a PutP proline permease gene homolog from Staphylococcus aureus by expression cloning of the high-affinity proline transport system in Escherichia coli. Appl Environ Microbiol, 1995. 61(1): p. 252-9. 74. Wood, J.M., Proline porters effect the utilization of proline as nutrient or osmoprotectant for bacteria. J Membr Biol, 1988. 106(3): p. 183-202. 75. Jung, H., Towards the molecular mechanism of Na(+)/solute symport in prokaryotes. Biochim Biophys Acta, 2001. 1505(1): p. 131-43. 76. von Blohn, C., et al., Osmostress response in Bacillus subtilis: characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B. Mol Microbiol, 1997. 25(1): p. 175-87. 77. Spiegelhalter, F. and E. Bremer, Osmoregulation of the opuE proline transport gene from Bacillus subtilis: contributions of the sigma A- and sigma B-dependent stress-responsive promoters. Mol Microbiol, 1998. 29(1): p. 285-96. 78. Hahne, H., et al., A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation. J Bacteriol, 2010. 192(3): p. 870-82. 79. Errington, J., Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev, 1993. 57(1): p. 1-33. 80. Piggot, P.J. and D.W. Hilbert, Sporulation of Bacillus subtilis. Curr Opin Microbiol, 2004. 7(6): p. 579-86. 81. Predich, M., G. Nair, and I. Smith, Bacillus subtilis early sporulation genes kinA, spo0F, and spo0A are transcribed by the RNA polymerase containing sigma H. J Bacteriol, 1992. 174(9): p. 2771-8. 82. Zhao, H., et al., DNA complexed structure of the key transcription factor initiating development in sporulating bacteria. Structure, 2002. 10(8): p. 1041-50. 83. Baldus, J.M., et al., Phosphorylation of Bacillus subtilis transcription factor Spo0A stimulates transcription from the spoIIG promoter by enhancing binding to weak 0A boxes. J Bacteriol, 1994. 176(2): p. 296-306. 84. Sonenshein, A.L., Control of sporulation initiation in Bacillus subtilis. Curr Opin Microbiol, 2000. 3(6): p. 561-6. 85. Rossignol, D.P. and J.C. Vary, L-Proline site for triggering Bacillus megaterium spore germination. Biochem Biophys Res Commun, 1979. 89(2): p. 547-51. 86. Boland, F.M., et al., Complete spore-cortex hydrolysis during germination of Bacillus subtilis 168 requires SleB and YpeB. Microbiology, 2000. 146 ( Pt 1): p. 57-64. 87. Hudson, K.D., et al., Localization of GerAA and GerAC germination proteins in the Bacillus subtilis spore. J Bacteriol, 2001. 183(14): p. 4317-22. 88. Molle, V., et al., The Spo0A regulon of Bacillus subtilis. Mol Microbiol, 2003. 50(5): p. 1683-701. 89. Eichenberger, P., et al., The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol, 2004. 2(10): p. e328. 90. Rossignol, D.P. and J.C. Vary, Biochemistry of L-proline-triggered germination of Bacillus megaterium spores. J Bacteriol, 1979. 138(2): p. 431-41. 91. Fulco, A.J. and R.T. Ruettinger, Occurrence of a barbiturate-inducible catalytically self-sufficient 119,000 dalton cytochrome P-450 monooxygenase in bacilli. Life Sci, 1987. 40(18): p. 1769-75. 92. Birnboim, H.C. and J. Doly, A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res, 1979. 7(6): p. 1513-23. 93. Igo, M.M. and R. Losick, Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme in Bacillus subtilis. J Mol Biol, 1986. 191(4): p. 615-24. 94. Chang, S. and S.N. Cohen, High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet, 1979. 168(1): p. 111-5. 95. Kunst, F. and G. Rapoport, Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol, 1995. 177(9): p. 2403-7. 96. Janknecht, R., et al., Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus. Proc Natl Acad Sci U S A, 1991. 88(20): p. 8972-6. 97. Wang, S.T., et al., The forespore line of gene expression in Bacillus subtilis. J Mol Biol, 2006. 358(1): p. 16-37. 98. Tseng, C.L., H.J. Chen, and G.C. Shaw, Identification and characterization of the Bacillus thuringiensis phaZ gene, encoding new intracellular poly-3-hydroxybutyrate depolymerase. J Bacteriol, 2006. 188(21): p. 7592-9. 99. Lin, J.S. and G.C. Shaw, Regulation of the kduID operon of Bacillus subtilis by the KdgR repressor and the ccpA gene: identification of two KdgR-binding sites within the kdgR-kduI intergenic region. Microbiology, 2007. 153(Pt 3): p. 701-10. 100. Haldenwang, W.G., The sigma factors of Bacillus subtilis. Microbiol Rev, 1995. 59(1): p. 1-30. 101. Commichau, F.M., et al., Glutamate metabolism in Bacillus subtilis: gene expression and enzyme activities evolved to avoid futile cycles and to allow rapid responses to perturbations of the system. J Bacteriol, 2008. 190(10): p. 3557-64. 102. Muro-Pastor, A.M. and S. Maloy, Proline dehydrogenase activity of the transcriptional repressor PutA is required for induction of the put operon by proline. J Biol Chem, 1995. 270(17): p. 9819-27. 103. Commichau, F.M. and J. Stulke, Trigger enzymes: bifunctional proteins active in metabolism and in controlling gene expression. Mol Microbiol, 2008. 67(4): p. 692-702. 104. Vilchez, S., et al., Proline catabolism by Pseudomonas putida: cloning, characterization, and expression of the put genes in the presence of root exudates. J Bacteriol, 2000. 182(1): p. 91-9. 105. Cho, K. and S.C. Winans, The putA gene of Agrobacterium tumefaciens is transcriptionally activated in response to proline by an Lrp-like protein and is not autoregulated. Mol Microbiol, 1996. 22(5): p. 1025-33. 106. Keuntje, B., B. Masepohl, and W. Klipp, Expression of the putA gene encoding proline dehydrogenase from Rhodobacter capsulatus is independent of NtrC regulation but requires an Lrp-like activator protein. J Bacteriol, 1995. 177(22): p. 6432-9. 107. Jafri, S., et al., An Lrp-type transcriptional regulator from Agrobacterium tumefaciens condenses more than 100 nucleotides of DNA into globular nucleoprotein complexes. J Mol Biol, 1999. 288(5): p. 811-24. 108. Macaluso, A., E.A. Best, and R.A. Bender, Role of the nac gene product in the nitrogen regulation of some NTR-regulated operons of Klebsiella aerogenes. J Bacteriol, 1990. 172(12): p. 7249-55. 109. Suhr, M. and D. Kleiner, Genetic analysis of the regulatory putP region (coding for proline permease) in Klebsiella pneumoniae M5a1: evidence for regulation by the nac system. FEMS Microbiol Lett, 1993. 114(2): p. 191-4. 110. Madhusudhan, K.T., N. Huang, and J.R. Sokatch, Characterization of BkdR-DNA binding in the expression of the bkd operon of Pseudomonas putida. J Bacteriol, 1995. 177(3): p. 636-41. 111. Yuan, G. and S.L. Wong, Regulation of groE expression in Bacillus subtilis: the involvement of the sigma A-like promoter and the roles of the inverted repeat sequence (CIRCE). J Bacteriol, 1995. 177(19): p. 5427-33. 112. Lereclus, D., et al., Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spo0A mutant. Biotechnology (N Y), 1995. 13(1): p. 67-71. 113. White, T.A., et al., Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus. J Biol Chem, 2007. 282(19): p. 14316-27.
|