跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 06:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃金隆
研究生(外文):Jin-Long Huang
論文名稱:心房擴大之後電氣生理特性及心房顫動的機轉
論文名稱(外文):Electrophysiological Characteristics and Mechanisms of Atrial Fibrillation during Acute Atrial Dilatation
指導教授:陳適安陳適安引用關係丁紀台
指導教授(外文):Shih-Ann ChenChih-Tai Ting
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:115
中文關鍵詞:心房擴大心房顫動非接觸性氣球導管主要頻率隙連結連接素
外文關鍵詞:Atrial DilatationAtrial fibrillationNon-contact mapping catheterDominant frequencyGap junctionConnexin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:600
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:1
心房顫動是臨床上最常見的心律不整,同時也是造成心因性中風的主要原因。心房顫動所引起的快速心室跳動,可以產生一系列不良的影響,包括:心臟衰竭和心律過速所引起的心肌收縮力下降。而且心房顫動和心房擴大,在臨床上有很好的相關性。大部分的病人,心房顫動都合併有心房擴大的情形。心房擴大後易於形成心房顫動的機轉是我們想要探討的目標。心房顫動形成的理論主要是有三種--多數波理論(multiple-wavelet hypothesis),局部來源理論(focal-source hypothesis) 和單一迴旋母波(single reentry circuit with fibrillatory conduction)。尤其是心房顫動的多數波理論,被大部分學者認為是這一類心律不整的主因。然而另一類病患中,心房顫動往往是由心房的一個局部地區快速放電所形成的,其中包括肺靜脈,上腔靜脈或者是Marshall韌帶等。因此,心房擴大之後,心房顫動的機轉是我們研究的重點。本研究將利用狗的動物模式,也就是將狗的心臟給予離體之後,再將其心房擴大,然後經由電刺激來誘發心房顫動並探討其形成的機轉。在第一章中,我們會先回顧心房顫動的流行病學及血流動力的變化。在第二章中,將會探討心房顫動形成的原理,包含多數波理論、局部來源理論和單一迴旋母波理論。多數波理論與波長理論(wavelength)的關係密切。局部來源理論是認為在心房顫動的時候,是由心房的某個地方,有一個所謂的驅動點(driver),由它來驅動心房顫動的發生,而這些驅動點特別多位在左心房。另外,單一迴旋母波亦可引發心房顫動。第三章中,我們將介紹在心房擴大之後,用高密度波形紀錄技術(high-density mapping technique)來探討心房顫動發生的原因與傳導的不勻稱性(heterogeneity)之間的關聯。第四章中,將用非接觸性氣球導管(non-contact mapping balloon catheter)分別放置於右心房及左心房,來探討心房擴大之後,心房整體性電氣波的變化。以及心房擴大之後,它的最大主要頻率(maximal dominant frequency)與電氣波數目(wavefront number)的關聯性。第五章中,將要研究在心房擴大之後,心房組織內隙連結(gap junction)的變化。包括:連接素(connexin)與心房傳導速度上的關聯。
結論:在離體狗心臟的急性心房擴大研究中,可以發現心房傳導的變化--包括心房擴大之後,心房傳導速度的變慢及傳導不勻稱性的增加。由非接觸性氣球導管分析中,可以發現心房顫動發生時,最大主要頻率是位於左心房的後壁,而且與電氣波分裂(wavefront splitting)有很大的關聯。再加上心房組織連接素的變化,更可以發現到心房擴大之後,心房傳導速度的變慢與病理及分子上的原因。
Atrial fibrillation (AF) is the most commonly encountered sustained arrhythmia and the major factor of cardiogenic stroke. AF could result in a series of adverse effects, such as heart failure, rapid ventricular response and decrease of myocardial contractility. Clinical association of AF with atrial enlargement has led to the assumption that atrial stretch plays an important role in the occurrence of AF. However, it is not clear what the mechanism of AF in acute atrial dilatation is. Multiple wavelets, focal source, and single reentry circuit with fibrillatory conduction are three hypotheses to explain the mechanisms of AF. Which one is the major role and what is the contribution to AF in acute atrial dilatation? Our studies will use isolated Langendorff-perfused canine hearts to investigate the effects of atrial dilatation on the atrial electrophysiological properties by high-density mapping techniques (contact high-density plaque and non-contact mapping systems).
First, we will review the epidemiology, prognosis and the hemo- dynamic consequences of AF in chapter one. In chapter two, we will discuss the three major hypotheses of AF—multiple wavelets, focal-source, and Lewis hypothesis (single reentry circuit with fibrillatory conduction). In chapter three, we will study the changes of atrial conduction characteristics by high-density mapping plaque in acute atrial dilatation. In chapter four, bi-atrial global mapping by non-contact mapping system will show the characteristics of wavefronts in AF during atrial dilatation. We will study the changes of dominant frequency in AF during atrial dilatation. In chapter five, we further investigate the changes of gap junction during atrial dilatation.
There are three major conclusions in this thesis: (1) During atrial dilatation, the increase of dispersion in refractoriness and regional slow conduction are related to the induction of AF. (2) In acute atrial dilatation, the percentage of the low voltage zones increased, especially in the LA posterior wall, which was correlated with the regional splitting of the AF wavefronts. The increase in the splitting facilitated the formation of new wavefronts, and resulted in a higher max dominant frequency during acute atrial dilatation. (3) The reduction of connexin 40, widening of interstitial space, cardiomyocyte swelling, and disconnection of myofibril may work together to reduce the conduction after atrial dilatation.
目錄
中文摘要---------------------------------------------------------2-4
英文摘要---------------------------------------------------------5-6
中英文對照表--------------------------------------------------7-10
第一章 緒論--------------------------------------------------11-15
第二章 心房顫動形成的機轉-----------------------------16-22
第三章 心房擴大之後心房電氣特性的改變-----------23-47
第四章 心房擴大之後心房顫動時主要頻率的變化--48-76
第五章 心房擴大之後隙連結及傳導速度的變化-----77-92
第六章 結論--------------------------------------------------93-96
參考文獻------------------------------------------------------97-113
已發表之論文及相關著作--------------------------------114-115
參考文獻
1.Feinberg WM, Blackshear JL, Laupacis A, Kronmal R, Hart RG. Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications. Arch Intern Med 1995; 155: 469-73.
2.Feinberg WM, Pearce LA, Hart RG, Cushman M, Cornell ES, Lip GY, Bovill EG. Markers of thrombin and platelet activity in patients with atrial fibrillation: correlation with stroke among 1531 participants in the stroke prevention in atrial fibrillation III study. Stroke 1999; 30:2547-53.
3.Lind SE, Pearce LA, Feinberg WM, Bovill EG. Clinically significant differences in the International Normalized Ratio measured with reagents of different sensitivities. SPAF Investigators. Stroke Prevention in Atrial Fibrillation. Blood Coagul Fibrinolysis 1999; 10:215-27.
4.Keren G, Etzion T, Sherez J, Zelcer AA, Megidish R, Miller HI, Laniado S. Atrial fibrillation and atrial enlargement in patients with mitral stenosis. Am Heart J 1987; 114(5):1146-55.
5.Henry WL, Morganroth J, Pearlman AS, Clark CE, Redwood DR, Itscoitz SB, Epstein SE. Relation between echocardiographically determined left atrial size and atrial fibrillation. Circulation 1976; 53:273–279.
6.Levine JH, Guarnieri T, Kadish AH, White RI, Calkins H, Kan JS. Changes in myocardial repolarization in patients undergoing balloon valvuloplasty for congenital pulmonary stenosis: evidence for contraction-excitation feedback in humans. Circulation 1988; 77:70–77.
7.Cristal N, Peterburg I, Szwarcberg J. Atrial fibrillation developing in the acute phase of myocardial infarction: prognostic implications. Chest 1976; 70:8-11.
8.Moe GK. On the multiple wavelet hypothesis of atrial fibrillation. Arch Int Pharmacodyn Ther 1962; 140:183-188.
9.Moe GK. A conceptual model of atrial fibrillation. J Electrocardiol. 1968; 1:145-6, 1968.
10.Allessie MA, Lammers WJEP, Bonke FIM. Experimental evaluation of Moe's multiple wavelet hypothesis of atrial fibrillation. In: Zipes DP, Jalife J, eds. Cardiac electrophysiology and arrhythmias. New York, NY: Grune & Stratton 1985, PP 265-275.
11.Chen SA, Hsieh MH, Tai CT, Tsai CF, Prakash VS, WC, Hsu TL, Ding YA, Chang MS. Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation. Circulation 1999; 100:1879-86.
12.Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Metayer P, Clementy J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 1998; 339: 659–666.
13.Tsai CF, Tai CT, Hsieh MH, Lin WS, Yu WC, Ueng KC, Ding YA, Chang MS, Chen SA. Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: electrophysiological characteristics and results of radiofrequency ablation. Circulation 2000; 102:67-74.
14.Lin WS, Tai CT, Hsieh MH, Tsai CF, Lin YK, Tsao HM, Huang JL, Yu WC, Yang SP, Ding YA, Chang MS, Chen SA. Catheter ablation of paroxysmal atrial fibrillation initiated by non-pulmonary vein ectopy. Circulation 2003; 107:3176-83.
15.Chen SA, Chen YJ, Yeh HI, Tai CT, Chen YC, Lin CI. Pathophysiology of the pulmonary vein as an atrial fibrillation initiator. Pacing Clin Electrophysiol 2003; 26:1576-82.
16.Scott PA, Pancioli AM, Davis LA, Frederiksen SM, Eckman J. Prevalence of atrial fibrillation and antithrombotic prophylaxis in emergency department patients. Stroke 2002; 33: 2664-9.
17.Shen X. Li H, Rovang K, Hee T, Holmberg MJ, Mooss AN, Mohiuddin SM. Prevalence of intra-atrial thrombi in atrial fibrillation patients with subtherapeutic international normalized ratios while taking conventional anticoagulation. Am J Cardiol 2002; 90: 660-2.
18.Kirsh JA, Walsh EP, Triedman JK. Prevalence of and risk factors for atrial fibrillation and intra-atrial reentrant tachycardia among patients with congenital heart disease. Am J Cardiol 2002; 90:338-40.
19.Friberg J, Scharling H, Gadsboll N, Jensen GB. Sex-specific increase in the prevalence of atrial fibrillation (The Copenhagen City Heart Study). Am J Cardiol 2003; 92: 1419-23.
20.Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 1991; 22:983-8.
21.Fuster V, Ryden LE, Asinger RW, Cannom DS, Crijns HJ, Frye RL, Halperin JL, Kay GN, Klein WW, Levy S, McNamara RL, Prystowsky EN, Wann LS, Wyse DG, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Gregoratos G, Hiratzka LF, Jacobs AK, Russell RO, Smith SC Jr. Klein WW, Alonso-Garcia A, Blomstrom-Lundqvist C, de Backer G. Flather M, Hradec J, Oto A, Parkhomenko A, Silber S, Torbicki A. ACC/AHA/ESC Guidelines for the Management of Patients With Atrial Fibrillation: Executive Summary. Circulation 2001; 104: 2118-50.
22.Morillo CA, Klein GJ, Jones DL, Guiraudon CM. Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation 1995; 91:1588-95.
23.Prinzmetal M, Coraday E. Mechanism of the auricular arrhythmias. Circulation 1950; 1:241-5.
24.Jalife J, Berenfeld O, Mansour M. Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovasc Res 2002; 54:204-16.
25.Ravelli F, Allessie M. Effects of atrial dilatation on refractory period and vulnerability to atrial fibrillation in the isolated Langendorff -perfused rabbit heart. Circulation 1997; 96:1686–1695.
26.Rensma PL, Allessie MA, Lammers WJ, Bonke FI, Schalij MJ. Length of excitation wave and susceptibility to reentrant atrial arrhythmias in normal conscious dogs. Circ Res 1988; 62:395-410.
27.Allessie MA, Bonke FI, Schopman FJ. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The "leading circle" concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res 1977; 41: 9-18.
28.Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 1995; 92:1954-68.
29.Wijffels MC, Kirchhof CJ, Dorland R, Power J, Allessie MA. Electrical remodeling due to atrial fibrillation chronically instrumented conscious goats: the role of neurohumoral changes, ischemia, atrial stretch, and high rate of electrical activation. Circulation 1997; 96:3710-3720.
30.White CW, Kerber RE, Weiss HR, Marcus ML. The effects of atrial fibrillation on atrial pressure-volume and flow relationships. Circ Res 1982; 51:205-15.
31.Misier AR, Opthof T, van Hemel NM, Defauw JJ, de Bakker JM, Janse MJ, van Capelle FJ. Increased dispersion of "refractoriness" in patients with idiopathic paroxysmal atrial fibrillation. J Am Coll Cardiol 1992; 19:1531-5.
32.Cosio FG, Palacios J, Vidal JM, Cocina EG, Gomez-Sanchez MA, Tamargo L. Electrophysiologic studies in atrial fibrillation. Slow conduction of premature impulses: a possible manifestation of the background for reentry. Am J Cardiol 1983; 51:122-30.
33. Lin FY, Lo HM, Jong YS, Lin JL, Cheng JJ, Hung CR. Treatment with new surgical method for chronic atrial fibrillation in 5 cases with mitral valve disease. J Formos Med Assoc. 1991; 90:300-3.
34. Lin FY, Huang JH, Lin JL, Chen WJ, Lo HM, Chu SH. Atrial compartment surgery for chronic atrial fibrillation associated with congenital heart defects. J Thorac Cardiovasc Surg 1996; 111:231-7.
35. Cox JL, Schuessler RB, Boineau JP. The development of the Maze procedure for the treatment of atrial fibrillation. Semin Thorac Cardiovasc Surg 2000; 12:2-14.
36. Scherf D. Studies on auricular tachycardia caused by aconitine administration. Proc Soc Exp Biol Med 1947; 64:233-239.
37. Mandapati R, Skanes A, Chen J, Berenfeld O, Jalife J. Stable micro-reentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation 2000; 101, 194-199.
38. Mansour M, Mandapati R, Berenfeld O, Chen J, Samie FH, Jalife J. Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart. Circulation 2001; 103:2631-6.
39. Lewis T, Drury AN, Bulger HA. Observation upon flutter and fibrillation. Part 2.-The nature of auricular flutter. Heart 1918-1920; 7:191-246.
40. Kalifa J, Jalife J, Zaitsev AV, Bagwe S, Warren M, Moreno J, Berenfeld O, Nattel S. Intra-atrial pressure increases rate and organization of waves emanating from the superior pulmonary veins during atrial fibrillation. Circulation 2003; 108: 668 - 671.
41. Lerman BB, Burkhoff D, Yue DT, Franz MR, Sagawa K. Mechanoelectrical feedback: independent role of preload and contractility in modulation of canine ventricular excitability. J Clin Invest 1985; 76:1843–1850.
42. Franz MR, Burkhoff D, Yue DT, Sagawa K. Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts. Cardiovasc Res 1989; 23:213–223.
43. Kaseda S, Zipes DP. Contraction-excitation feedback in the atria: a cause of changes in refractoriness. J Am Coll Cardiol 1988; 11:1327-1336.
44. Solti F, Vecsey T, Kekesi V, Juhasz-Nagy A. The effect of atrial dilatation on the genesis of atrial arrhythmias. Cardiovasc Res 1989; 23:882-886.
45. Satoh T, Zipes DP. Unequal atrial stretch in dogs increases dispersion of refractoriness conducive to developing atrial fibrillation. J Cardiovasc Electrophysiol 1996; 7:833-842.
46. Bode F, Katchman A, Woosley RL, Franz MR. Gadolinium decreases stretch-induced vulnerability to atrial fibrillation. Circulation 2000; 101:2200-2205.
47. Calkins H, El Atassi R, Kalbfleisch S, Langberg J, Morady F. Effects of an acute increase in atrial pressure on atrial refractoriness in humans. Pacing Clin Electrophysiol 1992; 15:1674–1680.
48. Klein LS, Miles WM, Zipes DP. Effect of atrioventricular interval during pacing or reciprocating tachycardia on atrial size, pressure, and refractory period: contraction-excitation feedback in human atrium. Circulation 1990; 82:60–68.
49. Antz M, Scherlag BJ, Patterson E, Otomo K, Tondo C, Pitha J, Gonzalez MD, Jackman WM, Lazzara R. Electrophysiology of the right anterior approach to the atrioventricular node: studies in vivo and in the isolated perfused dog heart. J Cardiovasc Electrophysiol 1997; 8:47-51.
50. Nazir SA, Lab MJ. Mechanoelectric feedback in the atrium of the isolated guinea pig heart. Cardiovasc Res 1996; 32:112-119.
51. Babuty D, Lab M. Heterogeneous changes of monophasic action potential induced by sustained stretch in atrium. J Cardiovasc Electrophysiol 2001; 12:323-329.
52. Chen YJ, Tai CT, Chiou CW, Wen ZC, Chan P, Lee SH, Chen SA. Inducibility of atrial fibrillation during atrioventricular pacing with varying intervals: role of atrial electrophysiology and the autonomic nervous system. J Cardiovasc Electrophysiol 1999; 10:1578-1585.
53. Sideris DA, Toumanidis ST, Thodorakis M, Kostopoulos K, Tselepatiotis E, Langoura C, Stringli T, Moulopoulos SD. Some observations on the mechanism of pressure related atrial fibrillation. Eur Heart J 1994; 15:1585-1589.
54. Eijsbouts SCM, Zandvoort MAV, Schotten U, Allessie MA. Effects of acute atrial dilatation on heterogeneity in conduction. Pacing Clin Electrophysiol 2001; 24: 559.
55. Huang JL, Tai CT, Chen JT, Ting CT, Chen YT, Chang MS, Chen SA. Effect of atrial dilatation on electrophysiological properties and inducibility of atrial fibrillation. Bas Res Cardiol 2003; 98: 16-24.
56. Chen YJ, Chen SA, Tai CT, Yu WC, Feng AN, Ding YA, Chang MS. Electrophysiological characteristics of a dilated atrium in patients with paroxysmal atrial fibrillation and atrial flutter. J Interv Card Electrophysiol 1998; 2:181-186.
57. Morton JB, Sanders P, Vohra JK, Sparks PB, Morgan JG, Spence SJ, Grigg LE, Kalman JM. Effect of chronic right atrial stretch on atrial electrical remodeling in patients with an atrial septal defect. Circulation 2003; 107:1775-82.
58. Lin YJ, Tai CT, Huang JL, Lee KT, Lee PC, Hsieh MH, Lee SH, Higa S, Yuniadi Y, Liu TY, Chen SA. Characterization of right atrial substrate in patients with supraventricular tachyarrhythmias. J Cardiovasc Electrophysiol 2005; 16: 173-180.
59. Lin YJ, Tai CT, Liu TY, Higa S, Lee PC, Huang JL, Yuniadi Y, Huang BH, Lee KT, Lee SH, Ueng KC, Hsieh MH, Ding YA, Chen SA. Electrophysiological mechanisms and catheter ablation of complex atrial arrhythmias from crista terminalis: insight from three-dimensional noncontact mapping. Pacing Clin Electrophysiol 2004; 27:1231-1239.
60. Higa S, Tai CT, Lin YJ, Liu TY, Lee PC, Huang JL, Hsieh MH, Yuniadi Y, Huang BH, Lee SH, Ueng KC, Ding YA, Chen SA. Focal atrial tachycardia: new insight from non-contact mapping and catheter ablation. Circulation 2004; 109: 84-91.
61. Lin YJ, Tai CT, T Kao, Tso HW, Huang JL, Higa S, Yuniadi Y, Huang BH, Liu TY, Lee PC, Hsieh MH, Chen SA. Electrophysiologic characteristics and catheter ablation in patients with paroxysmal right atrial fibrillation. Circulation 2005;112:1692-700.
62. Liu TY, Tai CT, Huang BH, Higa S, Lin YJ, Huang JL, Yuniadi Y, Lee PC, Ding YA, Chen SA. Functional characterization of the crista terminalis in patients with atrial flutter: implications for radiofrequency ablation. J Am Coll Cardiol 2004; 43: 1639-1645.
63. Liu TY, Tai CT, Chen SA. Treatment of atrial fibrillation by catheter ablation of conduction gaps in the crista terminalis and cavotricuspid isthmus of the right atrium. J Cardiovasc Electrophysiol 2002; 13:1044-1046.
64. Liu TY, Tai CT, Lee PC, Hsieh MH, Higa S, Ding YA, Chen SA. Novel concept of atrial tachyarrhythmias originating from the superior vena cava: insight from noncontact mapping. J Cardiovasc Electrophysiol 2003; 14:533-539.
65. Tai CT, Huang JL, Lin LK, Hsieh MH, Lee PC, Ding YA, Chang MS, Chen SA. Noncontact three-dimensional mapping and ablation of upper loop re-entry originating in the right atrium. J Am Coll Cardiol 2002; 40: 746-753.
66. Weber S, Ndrepepa G, Schneider M, Geissler B, Schreieck J, Karch M, Schmieder S, Deisenhofer I, Zrenner B, Schomig A, Schmitt C. Characterization of onset mechanism and waveform analysis in patients with atrial fibrillation using a high-resolution noncontact mapping system. J Cardiovasc Electrophysiol 2003; 14: 176-81.
67. Pierpont GL, Chugh SS, Hauck JA, Gornick CC. Endocardial activation during ventricular fibrillation in normal and failing canine hearts. Am J Physiol, Heart Circ Physiol 2000; 279: H1737-H1747.
68. Everett TH, Moorman JR, Kok LC, Akar JG, Haines DE. Assessment of global atrial fibrillation organization to optimize timing of atrial defibrillation. Circulation 2001; 103:2857-61.
69. Sanders P, Morton JB, Davidson NC, Spence SJ, Vohra JK, Sparks PB, Kalman JM. Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans. Circulation 2003; 108:1461-8.
70. Spear MS, Moore E. Stretch-induced excitation and conduction disturbance in the isolated rat myocardium. J Electrocardiol 1972; 5:15-24.
71. Franz MR, Cima R, Wang D, Profitt D, Kurz R. Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation 1992; 86: 968-78.
72. Berenfeld O, Zaitsev AV, Mironov SF, Pertsov AM, Jalife J. Frequency-dependent breakdown of wave propagation into fibrillatory conduction across the pectinate muscle network in the isolated sheep right atrium. Circ Res 2002; 90: 1173-80.
73. Fast VG, Kleber AG. Role of wavefront curvature in propagation of cardiac impulse. Cardiovasc Res 1997; 33: 258-71.
74. Yang J, Garfinkel A. Destruction of stable spiral waves in oscillatory media. Phys Rev E 2003; 68: 066312-5.
75. Davidenko JM: Spiral waves in the heart. In Zipe DP, Jalife J (eds): Cardiac Electrophysiology: From Cell to Bedside. Philadelphia, WB Saunder, 1995, p 478-487.
76. Yeh HI, Hou SH, Hu HR, Lee YN, Li JY, Dupont E, Coppen SR, Ko YS, Severs NJ, Tsai CH. Alteration of gap junctions and connexins in the right atrial appendage during cardiopulmonary bypass. J Thorac Cardiovasc Surg 2002; 124:1106-12.
77. Kanagaratnam P, Cherian A, Stanbridge RD, Glenville B, Severs NJ, Peters NS. Relationship between connexins and atrial activation during human atrial fibrillation. J Cardiovasc Electrophysiol 2004; 15:206-16.
78. Ausma J, van der Velden HM, Lenders MH, van Ankeren EP, Jongsma HJ, Ramaekers FC, Borgers M, Allessie MA. Reverse structural and gap-junctional remodeling after prolonged atrial fibrillation in the goat. Circulation 2003; 107:2051-8.
79. Kirchhoff S, Nelles E, Hagendorff A, Kruger O, Traub O, Willecke K. Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice. Curr Biol 1998 26; 8(5):299-302.
80. Verheule S, van Batenburg CA, Coenjaerts FE, Kirchhoff S, Willecke K, Jongsma HJ. Cardiac conduction abnormalities in mice lacking the gap junction protein connexin40. J Cardiovasc Electrophysiol 1999; 10:1380-9.
81. Tamaddon HS, Vaidya D, Simon AM, Paul DL, Jalife J, Morley GE. High-resolution optical mapping of the right bundle branch in connexin40 knockout mice reveals slow conduction in the specialized conduction system. Circ Res 2000; 87:929-36.
82. Eloff BC, Lerner DL, Yamada KA, Schuessler RB, Saffitz JE, Rosenbaum DS. High resolution optical mapping reveals conduction slowing in connexin43 deficient mice. Cardiovasc Res 2001; 51:681-90.
83. Nao T, Ohkusa T, Hisamatsu Y, Inoue N, Matsumoto T, Yamada J, Shimizu A, Yoshiga Y, Yamagata T, Kobayashi S, Yano M, Hamano K, Matsuzaki M. Comparison of expression of connexin in right atrial myocardium in patients with chronic atrial fibrillation versus those in sinus rhythm. Am J Cardiol 2003 15; 91: 678-83.
84. van der Velden HM, van Kempen MJ, Wijffels MC, van Zijverden M, Groenewegen WA, Allessie MA, Jongsma HJ. Altered pattern of connexin40 distribution in persistent atrial fibrillation in the goat. J Cardiovasc Electrophysiol 1998; 9:596-607.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 劉世雄 (2000)。國小教師運用資訊科技融入教學策略之探討,資訊與教育,78,60-66。
2. 趙金祁、許榮富、黃芳裕 (1993)。科學哲學對組成科學知識之主張及演變。科學教育月刊,161,4-15。
3. 傅麗玉 (2001)。兒童科技史:台灣兒童讀物中科技史材料之研究。科學教育學刊,9(4),417-434。
4. 張國恩 (1999)。資訊融入各科教學之內涵與實施。資訊與教育,72,2-9。
5. 許良榮 (1999)。科學史與科學教學:一些省思與建議。物理教育,1(3), 93-101。
6. 許良榮 (1998)。科學史課文對於科學理論之閱讀學習的效果。中師數理學報,2(1),111-141。
7. 許良榮、李田英 (1995)。科學史在科學教學的角色和功能。科學教育月刊,179,15-27。
8. 陳淑媛、洪振方 (1998)。融入科學史之教學對學生了解科學本質之影響,科學與教育學報,2,121-150。
9. 洪振方 (1998)。在科學教學的另類選擇:融入科學史教學。屏師科學教育月刊,7,2-10。
10. 邱瓊慧 (2002)。中小學資訊科技融入教學之實踐。資訊與教育,88,3-9。
11. 林陳涌 (1996)。『了解科學本質量表』之發展與效化。科學教育學刊,4(1),1-58。
12. 林奇賢 (1998)。網路學習環境的設計與應用,資訊與教育,67,34-49。
13. 林奇賢 (1997)。全球資訊網輔助學習系統網際網路與國小教育,資訊與教育,58,2-11。
14. 巫俊明 (1997)。歷史導向物理課程對學生科學本質的了解、科學態度、及物理學科成績之影響。物理教育,1(2),64-84。
15. 何榮桂 (2002)。台灣資訊教育的現況與發展--兼論資訊科技融入教學,資訊與教育,87,22-48。