跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾泓元
研究生(外文):ZENG, HONG-YUAN
論文名稱:非冷卻型紅外線熱敏陣列之光電特性效能模組建構與驗證
論文名稱(外文):Model Construction and Performance Evaluation for Uncool Bolometer Infrared Arrays
指導教授:陳子江陳子江引用關係
指導教授(外文):CHEN, TZU-CHIANG
口試委員:陳子江, 董德國, 湯相峰, 李清庭, 孫台平, 齊立平, 田仲豪, 李欣縈, 林瑞明
口試委員(外文):CHEN, TZU-CHIANG、TUNG,DER-KUO、TANG, SHIANG-FENG、LEE, CHING-TING、SUN, TAI-PING、CHI, LI-PIN、TIEN, CHUNG-HAO、LEE, HSIN-YING、Lin, Ray-Ming
口試日期:2018-12-03
學位類別:博士
校院名稱:國防大學理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:130
中文關鍵詞:氧化釩陣列型元件紅外線Essential Macleod
外文關鍵詞:Vanadium oxide(VOx)FPAinfraredEssential Macleod
相關次數:
  • 被引用被引用:1
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本文主要研究非致冷型熱影像Micro-Bolometer元件設計、效能模擬模組及測量平台建置、呼吸頻率變化量測。元件設計與效能模擬方面,本文使用Mathematica演算軟體建置單乙型與陣列型效能模組,並評估單乙型與陣列型元件效能。
單乙型與陣列型模擬模組需建構響應時間、光響應、雜訊等效溫度差、雜訊等效功率以及偵測度用於模擬Bolometer的信號與雜訊效能。本文利用效能模組取得Bolometer 50μm在偏壓50mV的光響應與雜訊電壓,並應用測量數據與模擬數據相互比較以校正與提升單乙型模擬模組精確度。之後,單乙型模組加入讀取電路參數將陣列元件效能模組建置完成。
在本文,我們提出二氧化矽(SiO2)與氮化矽(Si3N4)所組成的多層抗反射薄膜結構之矽光窗,並應用紅外線長波長8~12 μm. 本文應用Essential Macleod軟體設計4層薄膜(二氧化矽與氮化矽組成兩個週期結構)與優化物體薄膜厚度。
在此基礎上模擬紅外線長波長矽光窗,而矽光窗樣本應用物理氣相沉積方式進行光窗元件製程,並利用傅里葉轉換紅外光譜儀取得矽光窗穿透率效能。從量測結果得知,雙面鍍膜矽光窗於波段8-12 μm範圍的穿透率效能相較於未鍍膜矽光窗是大幅提升近39%,且在9μm位置之穿透率最高可達到98%。而本文應用SiO2與Si3N4多層薄膜之矽光窗用於非致冷型Micro-Bolometer光電特性量測並取得較高的元件效能,因此能通用或替換Ge光窗。
在最後,本文應用Raspberry Pi與低成本熱影像器組成呼吸感測平台進行熱感測實驗,且檢測者是在非接觸式狀態下進行量測,以取得呼吸變異頻譜。這是呼吸感測實驗中的關鍵,主要因素是呼吸是評估人體健康與體能的重要指標,因此熱感測能應用於醫療或長照醫療設施。

In this paper, our main researches focus on the modeling construction and performance evaluation and measuring of breathing of thermal image bolometer. Regarding the modeling of bolometer structure design and performance simulation, we use analytical modeling of Mathematica to build performance model of single and FPA. The two performance model include the Response Time, Responsivity, Noise Equivalent Temperature Difference, Noise Equivalent Power, Detectivity, where noise factors of bolometer are to be considered. We use performance model to extract Responsivity and noise voltage of bolometer device with experiment result pixel size 50μm in under 50mV bias voltage, and compared measured data with simulation data to be confirmed for increase model accuracy. Then, performance model for the FPA is different from that of single element, because of the adding of ROIC.
Furthermore, we have proposed an antireflection coating multi-layers of SiO2/Si3N4 on silicon window, suitable for the infrared range of 8~12 μm. The 4-layers coating (2-periods of SiO2/Si3N4) with optimized thicknesses was designed using Essential Macleod program developed from Thin Film Center Inc. On the basis of the proposed long-wavelength infrared silicon-based window by simulation, the samples were also fabricated by physical vapor deposition to characterize and achieve the best possible agreement by FTIR spectroscopy. We have also demonstrated the performance of an uncooled micro-bolometer sensor using the coating multilayers of SiO2/Si3N4 on a silicon window, the high performance of a micro-bolometer sensor is characterized, which is compatible with the commonly used germanium window.
In the final , we demonstrate ThermSense, a new breathing sensing platform based on Raspberry Pi and low-cost thermal camera, which allows a user to measure target person breathing pattern in a contact-free manner to get RVS. With the designed key functions of breathing sensing, because breathing patterns are important indicators of health status and individuality. Therefore, thermSense can applications medical institutions or long-term care facilities.

誌謝 ii
摘要 iii
ABSTRACT v
目錄 vii
圖目錄 ix
表目錄 xi
1. 緒論 1
1.1 紅外線熱影像器應用 1
1.2 非致冷型熱影像器類型 3
1.3 研究動機 8
1.4 論文探討 9
1.5 論文架構 11
2. 原理 13
2.1 響應時間 15
2.2 光響應 18
2.3 雜訊等效溫度差 18
2.4 偵測度 19
2.5 內部應力 20
3. 實驗 25
3.1 氧化釩Micro-Bolometer結構與設計 26
3.2 Micro-bolometer元件電性模組與特性量測平台建置 28
3.3 響應時間模組 30
3.4 單乙型光響應模組 32
3.5 單乙型雜訊等效溫度差 33
3.6 偵測度模組 34
3.7 單乙型非致冷型Micro-Bolometer元件測量模組 36
3.8 陣列元件效能參數 43
3.9 長波長矽光窗設計與單乙型Micro-Bolometer元件量測 46
3.10 雙腳座元件應力模擬評估 49
3.11 氧化釩Micro-Bolometer熱影像器呼吸頻率量測 51
4. 實驗成果與討論 54
4.1 Ge 光窗量測元件光電特性分析 54
4.2 矽光窗穿透率與元件電特性分析 60
4.3 元件應力分析 64
4.4 熱影像器Lepton量測 71
5. 結論與未來展望 73
參考文獻 75
發表論文 78
自傳 79
附錄 82
[1]Rogalski A., “Infrared Detectors for the Future,” Acta Physica Polonica A, Vol. 116, pp. 389-406, 2009.
[2]“熱像儀”, 財團法人光電科技工業協進會, 1999.
[3]“FLIR SYSTEMS Thermal Security Cameras,” FLIR, 2011.
[4]Amon F., Bryner N., Lock A., and Hamins A., Performance Metrics for Fire Fighting Thermal Imaging Cameras Small and Full Scale Experiments, NIST Technical, U.S.A, pp. 15-18, 2008.
[5]Rogalski A., “Infrared Detectors: an Overview,” Infrared Physics & Technology, Vol. 43, pp. 187-210, 2002.
[6]Ostrower D., “Optical Thermal Imaging Replacing Microbolometer Technology and Achieving Universal Deployment,” Review the advanced semiconductor magazine, Vol. 19, No.6, pp. 24-27, 2006.
[7]“Uncooled Detectors for Thermal Imaging Cameras,” FLIR, 2008.
[8]Ambrosio R., Moreno M., Mireles J., Torres A., Kosarev A., and Heredia A., “An Overview of Uncooled Infrared Sensors Technology Based on Amorphous Silicon and Silicon Germanium Alloys,” Phys. Status Solidi C7, No. 3-4, pp. 1180-1183, 2010.
[9]“非冷卻型熱像攝影機發展現況”, 財團法人光電科技工業協進會,1997。
[10]Perera U., Bolometer, INTECH, Rijeka, pp. 23-30, 2012.
[11]Abdel R. M., Ilahi S., Zia M.F., Alduraibi M., Debbar N., Yacoubi N., and Ilahi B., “Temperature Coefficient of Resistance and Thermal Conductivity of Vanadium Oxide ‘Big Mac’ Sandwich Structure,” Infrared Physics & Technology, Vol. 71, pp. 127-130, 2015.
[12]Datskos P. C., and Lavrik N. V., Detectors-Figureos of Merit, Oak Ridge National Laboratory, Tennessee, pp. 349-357, 1999.
[13]Niklaus F., Decharat A., Jansson C., and Stemme G., “Performance Model for Uncooled Infrared Bolometer arrays and Performance Predictions of Bolometers Operating at Atmospheric Pressure,” Infrared Physics & Technology, Vol. 51, pp. 168-177, 2008.
[14]Eriksson P., Andersson J. Y., and Stemme G., “Thermal Characterization of Surface Micromachined Silicon Nitride Membranes for Thermal Infrared Detectors,” Journal of Microelectromechanical Systems, Vol. 6, pp. 55-61, 1997.
[15]Hyseni G., Caka N., and Hyseni K., “Infrared Thermal Detectors Parameters: Semiconductor Bolometers Versus Pyroelectrics,” Wseas Transactions on Circuits and Systems, Vol. 4, pp. 238-247, 2010.
[16]Budzier H. and Gerlach G., THERMAL INFRARED SENSORS THEORY, OPTIMISATION AND PRACTICE, WILEY, Hoboken, pp. 90-94, 2011.
[17]Korvink J. G., MEMS : A Practical Guide to Design, Analysis and Applications, Springer, Norwich, pp. 55-58, 2006.
[18]Dawit E., “Electro-Thermal Mechanical Modeling of Microbolometer for Reliability Analysis,” Canada, 2010.
[19]Cheng Q., Paradis S., Bui T., and Almasri M., “Design of Dual-Band Uncooled Infrared Microbolometer,” IEEE Sensors Journal, Vol. 11, No. 1, pp. 167-175, 2011.
[20]Budzier H. and Gerlach G., THERMAL INFRARED SENSORS THEORY, OPTIMISATION AND PRACTICE, WILEY, Hoboken, pp. 117-120, 2011.
[21]Kim K., Park J.Y., Kang H. K., Park J. o., Moon S., and Parka J.h., “Enhanced Performance of Microbolometer Using Coupled Feed Horn Antenna,” Proc. SPIE, Vol. 4592, 2001.
[22]Niklaus F., Jansson C., Decharat A., Källhammer J.E., Pettersson H., and Stemme G., “Uncooled Infrared Bolometer Arrays Operating in a Low to Medium Vacuum Atmosphere: Performance Model and Tradeoffs,” Proc. SPIE, Vol.6542, 2007.
[23]Moghadam R. Z., Ahmadvandand H., and Jannesari M., “Design and Fabrication of Multi-layers Infrared Antireflection Coating Consisting of ZnS and Ge on ZnS Substrate,” Infrared Physics & Technology, Vol.75, pp. 18-21, 2007.
[24]Rahmlow T., Lazo-Wasem. J. E., Wilkinson S., and Tinker F., “Dual Band Antireflection Coatings for the Infrared,” Proc. SPIE, Vol.6940, 2013.
[25]Awad E. S., Al-Khalli N. F., Abdel-Rahman M. R., Debbar N. A., and Alduraibi M. A., “Design and Optimization of Microbolometer Multilayer Optical Cavity,” Act. Phys. Polo. A, Vol.127, pp. 1295-1297, 2015.
[26]Zeng H. Y., Tang S. F., and Chen T. C., “Design and Measurement of Long-wavelength Infrared Antireflection Coating Multi-layers of SiO2 and Si3N4 on Silicon Window by Macleod Software and FTIR Technique,” IEEE ICASI, pp. 572-573, 2017.
[27]Zeng H. Y., Tang S. F., and Chen T. C., “Performance Evaluation for Uncooled Microbolometer Using Antireflection Coating of SiO2/Si3N4 Multiple Films on Silicon Window,” Sensors and Materials, pp. 339-345, 2018.
[28]AKSHAY B., and RAO C. S., “Stress-strain Analysis of a Micro Thermal Actuator by Finite Element Method,” IJSETR, Vol.6, pp 1039-1045, 2017.
[29]Cho Y., Nadia B. B., Simon J. J., and Marquardt N., “ThermSense: Smartphone-based Breathing Sensing Platform using Noncontact Low-Cost Thermal Camera,” ACIIW, pp. 83-84, 2017.
[30]Fei J., and Pavlidis I., “Analysis of Breathing Air Flow Patterns in Thermal Imaging,” IEEE EMBS, pp. 946-952, 2006.
[31]“FLIR LEPTON with Radiometry Datasheet,” FLIR.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top