|
1.Becquerel, E., Compt. Rend., 1839. 9: p. 145. 2.Adams, W.G., R.E. Day, and P. Roy, Soc. London, 1877. A25: p. 113. 3.Fritts, C.E., Am. J. Sci., 1883. 26: p. 465. 4.Ohl, R.S., US Patent, 1941. No.2(402): p. 622. 5.Riordan, M. and L. Hoddeson, Crystal Fire, Norton, New York, 1997. 6.Alferov, Z.I., et al., Sov. Phys. Semicond., 1971. 4: p. 2047. 7.Bonnet, D. and M.D. Archer, Series on Photoconversion of Solar Energy, 2001. 1: p. 245-269. 8.Rau, U. and H.W. Schock, Clean Electricity from Photovoltaics, Series on Photoconversion of Solar Energy, 2001. 1: p. 277-332. 9.Wronski, C.R. and D.E. Carlson, Clean Electricity from Photovoltaics, Series on Photoconversion of Solar Energy, 2001. 1: p. 199-236. 10.Halls, J.J.M. and R.H. Friend, Clean Electricity from Photovoltaics, Series on Photoconversion of Solar Energy, 2001. 1: p. 377-432. 11.B.O'Regan and M. Grätzel, Nature, 1991. 353: p. 737. 12.O'Regan, B.C. and M. Gratzel, Nature, 1991. 353(6346): p. 737-740. 13.Shockley, W. and H.J. Queisser, J. Appl. Phys., 1961. 32 p. 510. 14.孫允武. pn二極體簡介. 2006. 15.Torheim, O., Elementary Physics of P-N Junctions. 2007. 16.Green, M.A., et al., Progress in Photovoltaics: Research and Applications, 2012. 20(1): p. 12-20. 17.Zhao, J., et al., APPLIED PHYSICS LETTERS, 1998. 73(14): p. 1991-1993. 18.Schultz, O., S.W. Glunz, and G.P. Willeke, Progress in Photovoltaics: Research and Applications, 2004. 12(7): p. 553-558. 19.Petermann, J.H., et al., Progress in Photovoltaics: Research and Applications, 2012. 20(1): p. 1-5. 20.Keevers, M.J., et al., Progress in Photovoltaics: Research and Applications, 2008. 16: p. 235-239. 21.莊嘉琛, 太陽能工程-太陽電池篇. 台北:全華科技圖書, 1997. 22.M.K.Nazeeruddin, et al., J.Am.Chem.Soc, 2005. 127: p. 16835. 23.O'Regan, B.C., et al., The Effect of Al2O3 Barrier Layers in TiO2/Dye/CuSCN Photovoltaic Cells Explored by Recombination and DOS Characterization Using Transient Photovoltage Measurements. The Journal of Physical Chemistry B, 2005. 109(10): p. 4616-4623. 24.O'Regan, B.C. and F. Lenzmann, Charge Transport and Recombination in a Nanoscale Interpenetrating Network of n-Type and p-Type Semiconductors: Transient Photocurrent and Photovoltage Studies of TiO2/Dye/CuSCN Photovoltaic Cells. The Journal of Physical Chemistry B, 2004. 108(14): p. 4342-4350. 25.Peter, L., Transport, trapping and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells. Journal of Electroanalytical Chemistry, 2007. 599(2): p. 233-240. 26.Wang, Q., et al., Characteristics of High Efficiency Dye-Sensitized Solar Cells†. The Journal of Physical Chemistry B, 2006. 110(50): p. 25210-25221. 27.Zhang, Z., et al., Influence of 4-Guanidinobutyric Acid as Coadsorbent in Reducing Recombination in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 2005. 109(46): p. 21818-21824. 28.Zhang, Z., et al., Effects of ω-Guanidinoalkyl Acids as Coadsorbents in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2006. 111(1): p. 398-403. 29.Wang, M., et al., Surface Design in Solid-State Dye Sensitized Solar Cells: Effects of Zwitterionic Co-adsorbents on Photovoltaic Performance. Advanced Functional Materials, 2009. 19(13): p. 2163-2172. 30.Sommeling, P.M., et al., Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 2006. 110(39): p. 19191-19197. 31.O'Regan, B.C., et al., Measuring Charge Transport from Transient Photovoltage Rise Times. A New Tool To Investigate Electron Transport in Nanoparticle Films. The Journal of Physical Chemistry B, 2006. 110(34): p. 17155-17160. 32.O'Regan, B.C., et al. Comparison of the field and Fermi level dependence of transport and recombination in polymer/C60 cells and solid state dye-sensitized cells. 2006. SPIE. 33.Chen, P., et al., High Open-Circuit Voltage Solid-State Dye-Sensitized Solar Cells with Organic Dye. Nano Letters, 2009. 9(6): p. 2487-2492. 34.Boschloo, G. and A. Hagfeldt, Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Accounts of Chemical Research, 2009. 42(11): p. 1819-1826. 35.Gr, auml, and M. tzel, Mesoscopic Solar Cells for Electricity and Hydrogen Production from Sunlight. Chemistry Letters, 2005. 34(1): p. 8-13. 36.Marcus, R.A. and N. Sutin, Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics, 1985. 811(3): p. 265-322. 37.Fabregat-Santiago, F., et al., Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids. The Journal of Physical Chemistry C, 2007. 111(17): p. 6550-6560. 38.Wang, Q., J.-E. Moser, and M. Grätzel, Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 2005. 109(31): p. 14945-14953. 39.Fabregat-Santiago, F., et al., Electron Transport and Recombination in Solid-State Dye Solar Cell with Spiro-OMeTAD as Hole Conductor. Journal of the American Chemical Society, 2008. 131(2): p. 558-562. 40.Jennings, J.R. and L.M. Peter, A Reappraisal of the Electron Diffusion Length in Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2007. 111(44): p. 16100-16104. 41.Krüger, J., et al., Charge Transport and Back Reaction in Solid-State Dye-Sensitized Solar Cells: A Study Using Intensity-Modulated Photovoltage and Photocurrent Spectroscopy. The Journal of Physical Chemistry B, 2003. 107(31): p. 7536-7539. 42.Nazeeruddin, M.K., et al., Acid−Base Equilibria of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. Inorganic Chemistry, 1999. 38(26): p. 6298-6305. 43.Hulstrom, R., R. Bird, and C. Riordan, Spectral solar irradiance data sets for selected terrestrial conditions. Solar Cells, 1985. 15(4): p. 365-391. 44.http://pveducation.org/pvcdrom/appendicies/standard-solar-spectra. 45.http://www.1023world.net/diy/spectra/ 46.O'Regan, B.C., S. Scully, and A.C. Mayer, J. Phys. Chem. B, 2005. 109: p. 4616-4623. 47.Huang, S.Y., et al., J. Phys. Chem. B, 1997. 101 (14): p. 2576-2582. 48.Halme, J., et al., Device Physics of Dye Solar Cells. Advanced Materials, 2010. 22(35): p. E210-E234. 49.Hagfeldt, A., et al., Dye-Sensitized Solar Cells. Chemical Reviews, 2010. 110(11): p. 6595-6663. 50.Lagemaat, J.v.d. and A.J. Frank, J. Phys. Chem. B, 2001. 105: p. 11194-11205. 51.Duffy, N.W., L.M. Peter, and K.G.U. Wijayantha, Electrochemistry Communications, 2000. 2(4): p. 262-266. 52.Peter, L.M., et al., Transport and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells. Journal of Electroanalytical Chemistry, 2002. 524–525(0): p. 127-136. 53.郭大銓, 微波合成二氧化鈦奈米晶體在染料敏化太陽能電池之應用. 2011. 54.Boschloo, G., et al., Optimization of dye-sensitized solar cells prepared by compression method. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 148(1–3): p. 11-15. 55.Schlichthörl, G., et al., Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy. The Journal of Physical Chemistry B, 1997. 101(41): p. 8141-8155. 56.Chandrasekharan, N. and P.V. Kamat, Improving the Photoelectrochemical Performance of Nanostructured TiO2 Films by Adsorption of Gold Nanoparticles†. The Journal of Physical Chemistry B, 2000. 104(46): p. 10851-10857. 57.Kuang, D., et al., Co-sensitization of Organic Dyes for Efficient Ionic Liquid Electrolyte-Based Dye-Sensitized Solar Cells. Langmuir, 2007. 23(22): p. 10906-10909. 58.Geiger, T., et al., Molecular Design of Unsymmetrical Squaraine Dyes for High Efficiency Conversion of Low Energy Photons into Electrons Using TiO2 Nanocrystalline Films. Advanced Functional Materials, 2009. 19(17): p. 2720-2727.
|