|
[1] S. Arora, L. Babai, J. Stern, Z. Sweedyk, “The Hardness of Approximate Optima in Lattices, Codes, and Systems of Linear Equations,” Journal of Computer and System Science, vol. 54, 1997, pp. 317–331. [2] S. Arora, B. Barak, Computational Complexity, Cambridge University Press, 2009. [3] A. A. Babaev, “Procedures of Encoding and Decoding of Permutations,” Cybernetics and Systems Analysis, vol. 20, pp. 861–86 1984. [4] E. R. Berlekamp, R. J. McEliece, H. C.A. van Tilborg, “On the Inherent Intractibility of Certain Coding Problems,” IEEE Transactions on Information Theory, pp. 384–386, 1978. [5] I. Blake, “Permutation Codes for Discrete Channels,” IEEE Transactions on Information Theory, vol. 20, pp. 138–140, 1974. [6] C. Buchheim, P. J. Cameron, T. Wu, “On the Subgroup Distance Problem,” Discrete Mathematics, vol. 309, pp. 962–968, 2009. [7] P. J. Cameron, T. Wu, “The Complexity of the Weight Problem for Permutation and Matrix Groups,” Discrete Mathematics, vol. 310, pp. 408–416, 2010. [8] P. Cappelletti, C. Golla, P. Olivo, E. Zanoni, Flash Memories, Kluwer Academic Pub- lishers, 1999. [9] J.-C. Chang, R.-J. Chen, T. Kl?憝e, S.-C. Tsai, “Distance-Preserving Mappings from Binary Vectors to Permutations,” IEEE Transactions on Information Theory, vol. 49, pp. 1054–1059, 2003. [10] J.-C. Chang, “Distance-Increasing Mappings from Binary Vectors to Permutations,” IEEE Transactions on Information Theory, vol. IT-51, pp. 359–363, 2005. [11] J.-C. Chang, “Distance-Increasing Mappings from Binary Vectors to Permutations that Increase Hamming Distances by at Least Two,” IEEE Transactions on Information Theory, vol. 52, pp. 1683–1689, 2006. [12] C. J. Colbourn, T. Kl?憝e, “Permutation Arrays for Powerline Communication and Mutually Orthogonal Latin Squares,” IEEE Transactions on Information Theory, vol. 50, pp. 1289–1291, 2004. [13] D. R. de la Torre, C. J. Colbourn, and A. C. H. Ling, “An Application of Permutation Arrays to Block Cipher,” Congressus Numerantium, vol. 145, pp. 5–7, 2000. [14] M. Deza, S. A. Vanstone, “Bounds on Permutation Arrays,” Journal of Statistical Plan- ning and Inference, vol. 2, pp. 19–209, 1978. [15] I. Dinur, “Approximating SVP∞ to within almost Polynomial Factors is NP-hard,” Combinatorica, vol. 23, pp. 205–243, 2003. [16] K. Efremenko, “3-Query Locally Decodable Codes of Subexponential Length,” in Proceedings of ACM Symposium on Theory of Computing, pp. 39–44, 2009. [17] S. Huczynska, G. L. Mullen, “Frequency Permutation Arrays,” Journal of Combinatorial Designs, vol. 14, pp. 463–478, 2006. [18] J. Fridrich and D. Soukal, “Matrix Embedding for Large Payloads,” IEEE Transactions on Information Forensics and Security, vol. 1, pp. 390–395, 2006. [19] D. Inoue, T. Matsumoto, “A scheme of Standard MIDI Files steganography and its evaluation,” Security and Watermarking of Multimedia Contents IV, pp. 194–205, 2002. [20] A. Jiang, R. Mateescu, M. Schwartz, J. Bruck, “Rank Modulation for Flash Memories,” in Proceedings of IEEE International Symposium on Information Theory, pp. 1731–1735, 2008. [21] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,” in Proceedings of IEEE International Symposium on Information Theory, pp. 1736–1740, 2008. [22] S. Khot, “Hardness of Approximating the Shortest Vector Problem in Lattices,” Journal of the ACM, Vol. 52, pp. 789–808, 2005. [23] T. Kl?憝e, “Spheres of Permutations under the Infinity Norm - Permutations with Limited Displacement,” Reports in Informatics, Dept. of Informatics, Univ. Bergen, Report no. 376, 2008. [24] T. Kl?憝e, “Frequency Permutation Arrays within Distance one,” Reports in Informatics, Dept. of Informatics, Univ. Bergen, Report no. 382, 2009. [25] T. Kl?憝e, “Lower Bounds on the Size of Spheres of Permutations under the Chebychev Distance,” Designs, Codes and Cryptography, vol. 59, pp. 183–191, 2011. [26] T. Kl?憝e, T.-T. Lin, S.-C. Tsai, W.-G. Tzeng, “Permutation Arrays Under the Chebyshev Distance,” IEEE Transactions on Information Theory, vol. 56, pp. 2611–2617, 2010. [27] M. Kwan, The GIF Shuffle, http://www.darkside.com.au/gifshuffle/ [28] T.-T. Lin, S.-C. Tsai, W.-G. Tzeng, “Efficient Encoding and Decoding with Permutation Arrays,” in Proceedings of IEEE International Symposium on Information Theory, pp. 211-214, 2008. [29] A. M. McLoughlin, “The Complexity of Computing the Covering Radius of a Code,” IEEE Transactions on Information Theory, vol. 30, pp. 800–804, 1984. [30] C. Papadimitriou, Computational Complexity, Addison-Wesley Publishing Co, 1995. [31] K. W. Shum, ”Permutation Coding and MFSK Modulation for Frequency Selective Channel,” IEEE Personal, Indoor and Mobile Radio Communications, vol. 13, pp. 2063– 2066, Sept. 2002. [32] M. Schwartz, “Efficiently Computing the Permanent and Hafnian of some Banded Toeplitz Matrices,” Linear Algebra and its Applications, vol. 430, pp. 1364–1374, 2009 [33] C. Sims, “Computational Methods in the Study of Permutation Groups”, Computational Problems in Abstract Algebra, pp. 169–183, 1970. [34] D. E. Stevenson, “PNG Palette Permuter,” in Proceedings of the 11th annual SIGCSE, Conference on Innovation and Technology in Computer Science Education, pp. 143–147, 2006. [35] T. G. Swart, H. C. Ferreira, “Decoding Distance-Preserving Permutation Codes for Power-Line Communications,” in Proceedings of IEEE AFRICON, pp. 1–7, 2007. [36] D. Slepian, “Permutation Modulation,” Proceedings of the IEEE, vol. 53, pp. 228–236, Mar. 1965. [37] I. Tamo, M. Schwartz, “Correcting Limited-Magnitude Errors in the Rank-Modulation Scheme,” IEEE Transactions on Information Theory, vol. 56, pp. 2551–2560, Jun. 2010. [38] L. Trevisan, “Some Applications of Coding Theory in Computational Complexity,” Quaderni di Matematica, vol. 13, pp. 347–424, 2004. [39] J. H. van Lint, R. M. Wilson, A Course in Combinatiorics 2nd ed., Cambridge University Press, 2001. [40] A. Vardy, “The Intractability of Computing the Minimum Distance of a Code,” IEEE Transactions on Information Theory, vol. 43, pp. 1757–1766, 1997. [41] A. J. H. Vinck, J. Häring, “Coding and Modulation for Power-Line Communications,” in Proceedings of International Symposium on Power Line Communications, pp. 265-272, Apr. 2000. [42] A. J. H. Vinck, J. Häring, T. Wadayama, “Coded M-FSK for Power Line Communications,” in Proceedings of IEEE International Symposium on Information Theory, p. 137, 2000. [43] A. J. H. Vinck, “Coded Modulation for Powerline Communications,” AEU International Journal of Electronics and Communications, vol. 54, pp. 45–49, 2000. [44] Z. Wang, A. A. Jiang, J. Bruck, “On the Capacity of Bounded Rank Modulation for Flash Memories,” in Proceedings of IEEE International Symposium on Information Theory, pp. 1234–1238, 2009. [45] S. Yekhanin, “Towards 3-query Locally Decodable Codes of Subexponential Length,” Journal of the ACM, vol. 55, pp. 1–16, 2008.
|