|
參考文獻 1. Ang K. C. and Mazumdar J. N., 1997, “Mathematical asymmetric stenosis”, Mathematical and Computer Modeling, Vol. 25, pp.19-29. 2. Anderson H.I., Halden R., Glomsaker T., 2000, “Effects of surface irregularities on flow resistance in differently shaped arterial stenoses”, Journal of Biomechanics Vol. 33, pp.1257-1262. 3. Bramble J.H, and Shatz A.H.1970, ”On the numerical solution of ellipticboundary-value problems by least-squares approximation of the data”.in B.Hubbad(ed), Numerical Solution of PDE, Vol.2, Academic Pree.,New York, pp.107-133. 4. Barakat A.I., Karino T., Colton C., 1997, “Microcinematographic studies of flow patterns in the excised rabbit aorta and its major branches”, Biorheology, Vol.34, pp.199-221. 5. Caro C.G., Fitzgeral J.M., Schroter R.C., 1971, “Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism of atherogenesis”, Proceedings of the Royal Society,Vol. 177, pp.109-159. 6. Friedman M.H., Deters, O.J. and Bar Bargeron C.B., 1986, “Shear-dependent thickening of the human arterial intima”, Atherosclerosis, Vol 60, pp. 161-171. 7. Fry D.L., 1969, “Certain histological and chemical response of the vascular interface to acutely induced mechanical stress in the aorta of the dog”, Circulation Research, Vol.24, pp. 93-108. 8. Jiang B.N.1998, “The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics, Springer Series in Scientific Computation, Springer-Verlag,Heidelberg”. 9. Johnston Peter R and K.D., 1991, “Mathematical modeling of flow through an irregular arterial stenosis”, Journal of Biomechanics Vol.24, pp.1069-1077. 10. Kaazempur-Mofrad M. R., Wada S., Myers J. G., Ethier C. R., 2005, “Mass transfer and fluid flow in stenotic arteries axisymmetric and asymmetric models”, International journal of heat and mass transfer Vol.48, pp.4510-4517. 11.Latinopoulos, P, and Ganoulis, J., 1979, “Numerical Simulation of Oscillating Flow Through Idealized Sclerotic Arteries,” Computer Method in Applied Mechanics and Engineering.,Vol. 20, pp. 279-290. 12. Lee D., Chiu, Chen J.Y., 2000. “Numerical simulation of flow fields in a tube with two branches”. J. Biomech. Vol.33, pp.1305-1312. 13. Lee D., Chen J.Y., 2002. “Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches”. Journal of Biomechanics, Vol. 35, pp.1115-1122. 14. Lynn P.P. and Arya K., 1973”Use of the least square criterion in finite element formulation”, Int. J. Num. Methods Eng. 6, pp.75-88. 15.Manton, M. J.,1971 “Low Reynolds Number Flow in Slowly Varying Axi-symmetries Tubes,” J, Fluid Mech.,Vol. 49, Part3, pp. 451-459. 16. Stangeby D. Kim and Either C. Ross, 2002, “Computational analysis of coupled blood-wall arterial LDL transport”, Journal of Biomechanical Engineering Vol.124/1-/8. 17. Steinman, D.A., Ethier, C.R., “The Effect of Wall Distensibility on Flow in a Two-Dimensional End-to-Side Anastomosis,” J. Biomech. Eng., Vol . 116, p.294,1994. 18. Steinman, D.A., Bach, V., Ethier, C.R., Ojha, M., Cobbold, R. S. C., Johnston, K. W., 1993, “A Numerical Simulation of Flow in a Two- Dimensional End-to-Side Anastomosis Model,” J. Biomench. Eng., Vol. 115, p.112,
|