跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 03:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳孟彥
研究生(外文):Meng-Yen Chen
論文名稱:股動脈分岔血管流場與質傳現象之探討
論文名稱(外文):The study of femoral artery flow fields and mass transfer in branches steady and periodic
指導教授:鄧志浩鄧志浩引用關係
學位類別:碩士
校院名稱:中原大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:88
中文關鍵詞:迴流區域剪應力質傳現象
外文關鍵詞:mass transfershear stressComsol Multiphysics.reversed flow region
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究為兩分岔血管位於股動脈管的流場模擬,過程中是利用Comsol Multiphysis套裝軟體作數值分析,在文中建立了兩分岔血管於動脈的同側以及兩分岔血管之間不同間距的模型,並探討穩態流場與週期態脈動流場的現象。著重點在於三維分岔血管的質傳現象與流場分析,觀察其速度向量、流線、剪應力、與濃度分佈。
在兩分岔血管間距最小時,在第二根分岔血管的右側管壁會產生最大的剪應力值,隨著間距的增加,第二根分岔血管右側剪應力值漸漸降低,最後與第一根分岔血管右側剪應力值相同,代表已形成兩個獨立的分岔流場。
質傳方面,迴流區域的產生是影響氧濃度的最大關鍵,在第一根與第二根分岔血管中的迴流區造成低氧濃度區的產生。在週期態流場中,當心臟收縮週期流量為負值,動脈內產生的逆流,也造成低濃度區域的產生。
在週期態流場上,由於心臟的舒張而產生在入口處流量為負,因此在動脈中產生逆流,使得週期態流場與穩態流場比起來相對複雜的多。基於數值模擬的方式,本研究可有效的利用數值模擬來處理複雜的流場與質傳現象。
The simulation of blood flows in two branches of femoral artery by the Comsol Multiphysis has been presented in this study. Flow field phenomenon of two branches that are on the same side of the blood artery are simulated and discussed under steady and pulsatile states. The mass transfer and flow field phenomena which include the distribution of concentration, velocity vector, the oxygen concentration, shear stress and streamline of the three dimensional branches blood vessel are presented.
When the space between two branches blood vessels is the smallest one, has the highest shear stress in the right end side of the second branch, As the spacing between branched increase, the shear stress gradually reduces in the right-hand side of the second branch blood vessel. Eventually, the shear stress on the second branch is the same as the first branch, two independent branches blood flow fields.
For mass transfer distribution, reversed flow region is the important factor on the oxygen concentration. In the first and second branch blood vessels show reversed flow region where low oxygen concentration area exist. In the pulsatile condition flow field, when the contraction cycle of heart current was negative value the artery produces adverse current also creates low oxygen concentration region.
In pulsatile condition, the distribution of velocity field under the diastole period is negative value in the entrance current therefore produces adverse current in the artery, the recirculation flow field is more complex than the stable state flow field.
Based on the numerical stimulation, we can effectively simulate the whole complicated flow field and mass transfer in the three-dimensional artery with branches.
目 錄
頁次
摘要......................................................I
ABSTRACT..............................................II
致謝....................................................III
目錄.....................................................IV
圖目錄...................................................VI
符號說明..................................................X
第一章 緒論
1-1 研究動機..........................................01
1-2 研究方法和目的....................................02
1-3 文獻回顧..........................................03
第二章 理論分析
2-1 有限元素法........................................05
2-2 Comsol Multiphysics..............................06
第三章 模型建立與邊界條件給定
3-1 基本假設...................................09
3-2 模型建立與網格產生.............................10
3-3 人體股動脈之週期流量圖............................11
3-4 邊界條件給定......................................13
第四章 結果分析與討論
4-1 血液中穩態流場的血流情形..........................17
4-1-1 分岔血管之穩態流場分析......................17
4-1-2 三維分岔血管之剪力分析.......................19
4-1-3 三維分岔血管之質傳分析......................20
4-2 血液中週期態流場的血流情形........................22
4-2-1 血管中週期態流場之流場分析...................22
4-2-2 血管中週期態流場的剪力值分析.................24
4-2-3 血管中週期態流場的質傳分析...................25
第五章 結論與建議
5-1 結論.............................................28
5-2 建議.............................................30
參考文獻.................................................31
圖目錄
圖3-1 人體股動脈週期流量圖...............................34
圖3-2濃度分佈圖.................................34
圖4-1 XZ 平面上 之流速u 分佈圖.......................35
圖4-2 XZ 平面上 之流速u 分佈圖.......................35
圖4-3 XZ 平面上 之流速u 分佈圖.......................36
圖4-4 XZ 平面上 之流速u 分佈圖.......................36
圖4-5 XZ 平面上 之流速u 分佈圖.......................37
圖4-6 XZ 平面速度場分佈圖..........................37
圖4-7 XZ 平面速度場分佈圖...........................38
圖4-8 之向量分佈圖.................................38
圖4-9 之向量分佈圖.................................39
圖4-10 之向量分佈圖...............................39
圖4-11 之向量分佈圖................................40
圖4-12 之向量分佈圖................................40
圖4-13 各斷面剪應力分佈示意圖............................41
圖4-14 1-4D 斷面(6)剪應力圖............................42
圖4-15 1-4D 斷面(5)剪應力圖.............................43
圖4-16 1-4D 第一根分岔管左側剪應力圖....................44
圖4-17 1-4D 第一根分岔管右側剪應力圖....................45
圖4-18 1-4D 第二根分岔管左側剪應力圖....................46
圖4-19 1-4D 第二根分岔管右側剪應力圖....................47
圖4-20 間距s=1D XZ 平面濃度圖............................48
圖4-21 間距s=2D XZ 平面濃度圖............................48
圖4-22 間距s=3D XZ 平面濃度圖............................49
圖4-23 間距s=4D XZ 平面濃度圖............................49
圖4-24 間距s=5D XZ 平面濃度圖.............................50
圖4-25 間距s=1D 速度向量圖t/T=0.07......................50
圖4-26 間距s=1D 流線圖 t/T=0.07.........................51
圖4-27 間距s=1D 速度向量圖 t / T �� 0.07 .......................51
圖4-28 間距s=1D 速度向量圖t/T=0.15.......................52
圖4-29 間距s=1D 速度向量圖t/T=0.15.......................52
圖4-30 間距s=1D 流線圖 t/T=0.15..........................53
圖4-31 間距s=1D 流線圖t/T=0.22..........................53
圖4-32 間距s=1D 流線圖t/T=0.22...........................54
圖4-33 間距s=1D 速度向量圖t/T=0.27.......................54
圖4-34 間距s=1D 速度向量圖t/T=0.27.......................55
圖4-35 間距s=1D 流線圖t/T=0.27...........................55
圖4-36 間距s=1D 速度向量圖t/T=0.33......................56
圖4-37 間距s=1D 流線圖t/T=0.33..........................56
圖4-38 間距s=1D 速度向量圖t/T=0.33......................57
圖4-39 間距s=2D 速度向量圖t/T=0.07......................57
圖4-40 間距s=2D 速度向量圖t/T=0.15......................58
圖4-41 間距s=2D 速度向量圖t/T=0.22......................58
圖4-42 間距s=2D 速度向量圖t/T=0.27......................59
圖4-43 間距s=2D 速度向量圖t/T=0.33......................59
圖4-44 間距s=2D 速度向量圖t/T=0.33......................60
圖4-45 間距s=2D 流線圖t/T=0.07..........................60
圖4-46 間距s=2D 流線圖t/T=0.15..........................61
圖4-47 間距s=2D 流線圖t/T=0.22..........................61
圖4-48 間距s=2D 流線圖t/T=0.27..........................62
圖4-49 間距s=2D 流線圖t/T=0.33..........................62
圖4-50 間距s=1D 第一根分岔管左側各時間剪力圖.............63
圖4-51 間距s=1D 第一根分岔管右側各時間剪力圖............64
圖4-52 間距s=1D 第二根分岔管左側各時間剪力圖............65
圖4-53 間距s=1D 第二根分岔管右側各時間剪力圖............66
圖4-54 間距s=2D 第一根分岔管左側各時間剪力圖............67
圖4-55 間距s=2D 第一根分岔管右側各時間剪力圖............68
圖4-56 間距s=2D 第二根分岔管左側各時間剪力圖............69
圖4-57 間距s=2D 第二根分岔管右側各時間剪力圖.. ..........70
圖4-57 間距s=1D 斷面(5)各時間剪力圖.....................71
圖4-58 間距s=1D 斷面(6)各時間剪力圖.....................72
圖4-59 間距s=2D 斷面(5)各時間剪力圖.....................73
圖4-60 間距s=2D 斷面(6)各時間剪力圖.....................74
圖4-61 間距s=1D 濃度分佈圖t/T=0.........................75
圖4-62 間距s=1D 濃度分佈圖t/T=0.07......................75
圖4-63 間距s=1D 濃度分佈圖t/T=0.15......................76
圖4-64 間距s=1D 濃度分佈圖t/T=0.22......................76
圖4-65 間距s=1D 濃度分佈圖t/T=0.27......................77
圖4-66 間距s=1D 濃度分佈圖t/T=0.33......................77
圖4-67 間距s=1D 濃度分佈與向量圖t/T=0.33................78
參考文獻
1. Ang K. C. and Mazumdar J. N., 1997, “Mathematical asymmetric stenosis”, Mathematical and Computer Modeling, Vol. 25, pp.19-29.
2. Anderson H.I., Halden R., Glomsaker T., 2000, “Effects of surface irregularities on flow resistance in differently shaped arterial stenoses”, Journal of Biomechanics Vol. 33, pp.1257-1262.
3. Bramble J.H, and Shatz A.H.1970, ”On the numerical solution of
ellipticboundary-value problems by least-squares approximation of the
data”.in B.Hubbad(ed), Numerical Solution of PDE, Vol.2, Academic
Pree.,New York, pp.107-133.
4. Barakat A.I., Karino T., Colton C., 1997, “Microcinematographic studies of flow patterns in the excised rabbit aorta and its major branches”, Biorheology, Vol.34, pp.199-221.
5. Caro C.G., Fitzgeral J.M., Schroter R.C., 1971, “Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism of atherogenesis”, Proceedings of the Royal Society,Vol. 177, pp.109-159.
6. Friedman M.H., Deters, O.J. and Bar Bargeron C.B., 1986, “Shear-dependent thickening of the human arterial intima”, Atherosclerosis, Vol 60, pp. 161-171.
7. Fry D.L., 1969, “Certain histological and chemical response of the
vascular interface to acutely induced mechanical stress in the aorta of
the dog”, Circulation Research, Vol.24, pp. 93-108.
8. Jiang B.N.1998, “The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics, Springer Series in Scientific Computation, Springer-Verlag,Heidelberg”.
9. Johnston Peter R and K.D., 1991, “Mathematical modeling of flow through an irregular arterial stenosis”, Journal of Biomechanics Vol.24, pp.1069-1077.
10. Kaazempur-Mofrad M. R., Wada S., Myers J. G., Ethier C. R., 2005, “Mass transfer and fluid flow in stenotic arteries axisymmetric and asymmetric models”, International journal of heat and mass transfer Vol.48, pp.4510-4517.
11.Latinopoulos, P, and Ganoulis, J., 1979, “Numerical Simulation of Oscillating Flow Through Idealized Sclerotic Arteries,” Computer Method in Applied Mechanics and Engineering.,Vol. 20, pp. 279-290.
12. Lee D., Chiu, Chen J.Y., 2000. “Numerical simulation of flow fields in a tube with two branches”. J. Biomech. Vol.33, pp.1305-1312.
13. Lee D., Chen J.Y., 2002. “Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches”. Journal of Biomechanics, Vol. 35, pp.1115-1122.
14. Lynn P.P. and Arya K., 1973”Use of the least square criterion in finite element formulation”, Int. J. Num. Methods Eng. 6, pp.75-88.
15.Manton, M. J.,1971 “Low Reynolds Number Flow in Slowly Varying Axi-symmetries Tubes,” J, Fluid Mech.,Vol. 49, Part3, pp. 451-459.
16. Stangeby D. Kim and Either C. Ross, 2002, “Computational analysis of coupled blood-wall arterial LDL transport”, Journal of
Biomechanical Engineering Vol.124/1-/8.
17. Steinman, D.A., Ethier, C.R., “The Effect of Wall Distensibility on
Flow in a Two-Dimensional End-to-Side Anastomosis,” J. Biomech.
Eng., Vol . 116, p.294,1994.
18. Steinman, D.A., Bach, V., Ethier, C.R., Ojha, M., Cobbold, R. S. C.,
Johnston, K. W., 1993, “A Numerical Simulation of Flow in a Two-
Dimensional End-to-Side Anastomosis Model,” J. Biomench. Eng.,
Vol. 115, p.112,
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top