|
1.Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet, 2004. 363(9403): p. 157-63. 2.Kopelman, P.G., Obesity as a medical problem. Nature, 2000. 404(6778): p. 635-43. 3.Hotamisligil, G.S., et al., Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest, 1995. 95(5): p. 2409-15. 4.Gustafson, B., et al., Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol, 2007. 27(11): p. 2276-83. 5.Wellen, K.E. and G.S. Hotamisligil, Obesity-induced inflammatory changes in adipose tissue. J Clin Invest, 2003. 112(12): p. 1785-8. 6.de Luca, C. and J.M. Olefsky, Inflammation and insulin resistance. FEBS Lett, 2008. 582(1): p. 97-105. 7.Weisberg, S.P., et al., Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest, 2003. 112(12): p. 1796-808. 8.Xu, H., et al., Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest, 2003. 112(12): p. 1821-30. 9.Rocha, V.Z., et al., Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ Res, 2008. 103(5): p. 467-76. 10.Lumeng, C.N., J.L. Bodzin, and A.R. Saltiel, Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest, 2007. 117(1): p. 175-84. 11.Odegaard, J.I., et al., Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature, 2007. 447(7148): p. 1116-20. 12.Nguyen, K.D., et al., Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature, 2011. 480(7375): p. 104-8. 13.Whittle, A.J. and A. Vidal-Puig, Physiology: Immune cells fuel the fire. Nature, 2011. 480(7375): p. 46-7. 14.Zlotnik, A., O. Yoshie, and H. Nomiyama, The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol, 2006. 7(12): p. 243. 15.Kitade, H., et al., CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status. Diabetes, 2012. 61(7): p. 1680-90. 16.Kanda, H., et al., MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest, 2006. 116(6): p. 1494-505. 17.Weisberg, S.P., et al., CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest, 2006. 116(1): p. 115-24. 18.Tamura, Y., et al., C-C chemokine receptor 2 inhibitor improves diet-induced development of insulin resistance and hepatic steatosis in mice. J Atheroscler Thromb, 2010. 17(3): p. 219-28. 19.Nishimura, S., et al., CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med, 2009. 15(8): p. 914-20. 20.Kaufmann, A., et al., Increase of CCR1 and CCR5 expression and enhanced functional response to MIP-1 alpha during differentiation of human monocytes to macrophages. J Leukoc Biol, 2001. 69(2): p. 248-52. 21.Oghumu, S., et al., CXCR3 deficiency enhances tumor progression by promoting macrophage M2 polarization in a murine breast cancer model. Immunology, 2014. 22.Struyf, S., et al., Diverging binding capacities of natural LD78beta isoforms of macrophage inflammatory protein-1alpha to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. Eur J Immunol, 2001. 31(7): p. 2170-8. 23.Dorsam, R.T. and J.S. Gutkind, G-protein-coupled receptors and cancer. Nat Rev Cancer, 2007. 7(2): p. 79-94. 24.Turner, L., S.G. Ward, and J. Westwick, RANTES-activated human T lymphocytes. A role for phosphoinositide 3-kinase. J Immunol, 1995. 155(5): p. 2437-44. 25.Bacon, K.B., T.J. Schall, and D.J. Dairaghi, RANTES activation of phospholipase D in Jurkat T cells: requirement of GTP-binding proteins ARF and RhoA. J Immunol, 1998. 160(4): p. 1894-900. 26.Huang, C.Y., et al., CCL5 increases lung cancer migration via PI3K, Akt and NF-kappaB pathways. Biochem Pharmacol, 2009. 77(5): p. 794-803. 27.Tyner, J.W., et al., CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat Med, 2005. 11(11): p. 1180-7. 28.Chan, O., et al., The chemokine CCL5 regulates glucose uptake and AMP kinase signaling in activated T cells to facilitate chemotaxis. J Biol Chem, 2012. 287(35): p. 29406-16. 29.Chuang, J.Y., et al., CCL5/CCR5 axis promotes the motility of human oral cancer cells. J Cell Physiol, 2009. 220(2): p. 418-26. 30.Wu, H., et al., T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation, 2007. 115(8): p. 1029-38. 31.Keophiphath, M., et al., CCL5 promotes macrophage recruitment and survival in human adipose tissue. Arterioscler Thromb Vasc Biol, 2010. 30(1): p. 39-45. 32.Montecucco, F., et al., CC chemokine CCL5 plays a central role impacting infarct size and post-infarction heart failure in mice. Eur Heart J, 2012. 33(15): p. 1964-74. 33.Liou, J.T., et al., Absence of C-C motif chemokine ligand 5 in mice leads to decreased local macrophage recruitment and behavioral hypersensitivity in a murine neuropathic pain model. Pain, 2012. 153(6): p. 1283-91. 34.Sigrist, S., et al., Activation of human macrophages by allogeneic islets preparations: inhibition by AOP-RANTES and heparinoids. Immunology, 2004. 111(4): p. 416-21. 35.Zamilpa, R., et al., CC chemokine receptor 5 deletion impairs macrophage activation and induces adverse remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol, 2011. 300(4): p. H1418-26. 36.Kennedy, A., et al., Loss of CCR5 results in glucose intolerance in diet-induced obese mice. Am J Physiol Endocrinol Metab, 2013. 305(7): p. E897-906. 37.Elsegood, C.L., et al., Glucose metabolism is required for oxidized LDL-induced macrophage survival: role of PI3K and Bcl-2 family proteins. Arterioscler Thromb Vasc Biol, 2009. 29(9): p. 1283-9. 38.Fukuzumi, M., et al., Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1. Infect Immun, 1996. 64(1): p. 108-12. 39.Feingold, K.R., et al., Mechanisms of triglyceride accumulation in activated macrophages. J Leukoc Biol, 2012. 92(4): p. 829-39. 40.Freemerman, A.J., et al., Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem, 2014. 289(11): p. 7884-96. 41.Gamelli, R.L., et al., Augmentations of glucose uptake and glucose transporter-1 in macrophages following thermal injury and sepsis in mice. J Leukoc Biol, 1996. 59(5): p. 639-47. 42.Bian, Z., et al., CCN1 expression in hepatocytes contributes to macrophage infiltration in nonalcoholic fatty liver disease in mice. J Lipid Res, 2013. 54(1): p. 44-54. 43.Jordan, S.D., et al., Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol, 2011. 13(4): p. 434-46. 44.Zhang, W., et al., AMP-activated protein kinase alpha1 protects against diet-induced insulin resistance and obesity. Diabetes, 2012. 61(12): p. 3114-25. 45.Bentley, J., et al., Interleukin-3-mediated cell survival signals include phosphatidylinositol 3-kinase-dependent translocation of the glucose transporter GLUT1 to the cell surface. J Biol Chem, 2003. 278(41): p. 39337-48. 46.Furuichi, K., et al., Chemokine receptor CCR1 regulates inflammatory cell infiltration after renal ischemia-reperfusion injury. J Immunol, 2008. 181(12): p. 8670-6. 47.Wright, D.C., et al., The effects of phospholipase C inhibition on insulin-stimulated glucose transport in skeletal muscle. Metabolism, 2002. 51(3): p. 271-3. 48.Abbott, M.J., A.M. Edelman, and L.P. Turcotte, CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 2009. 297(6): p. R1724-32. 49.Wu, W.N., et al., Orexin-A activates hypothalamic AMP-activated protein kinase signaling through a Ca(2)(+)-dependent mechanism involving voltage-gated L-type calcium channel. Mol Pharmacol, 2013. 84(6): p. 876-87. 50.Vats, D., et al., Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab, 2006. 4(1): p. 13-24. 51.Liu, B., et al., The novel chemokine receptor, G-protein-coupled receptor 75, is expressed by islets and is coupled to stimulation of insulin secretion and improved glucose homeostasis. Diabetologia, 2013. 56(11): p. 2467-76
|