跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡宏哲
研究生(外文):Chien Hung-Che
論文名稱:探討RANTES路徑媒介之葡萄糖攝取作用對巨噬細胞移行及活化作用的影響
論文名稱(外文):The Role of RANTES Signaling on Macrophage Migration and Activation through RANTES-Mediated Glucose Uptake.
指導教授:謝博軒
指導教授(外文):Hsieh Po-Shiuan
口試委員:洪麗滿阮琪昌周思怡蔡旻倩
口試委員(外文):Hung Li-ManJuan Chi-ChangChou Szu-YiTsai Min-Chien
口試日期:2014-05-19
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:85
中文關鍵詞:趨化素第五型葡萄糖攝取作用巨噬細胞移行作用
外文關鍵詞:RANTES(CCL5)Glucose uptakeMacrophageMigration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:487
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
巨噬細胞的浸潤與活化在組織發炎的進程扮演一個相當重要的角色,特別是在肥胖相關的脂肪組織發炎,目前我們已經知道趨化素RANTES可以促進巨噬細胞的浸潤,而RANTES的接受器CCR5在巨噬細胞的活化也佔有重要的地位,但其調控的相關機轉還不是非常明瞭;在本實驗中,我們利用RAW cell小鼠巨噬細胞株及THP-1 cell人類巨噬細胞株,去探討RANTES是否會藉由影響葡萄糖攝取作用來調控巨噬細胞的浸潤,及影響巨噬細胞的活化。
實驗結果顯示,RANTES可以增加RAW cell的葡萄糖攝取作用,利用2-DG抑制巨噬細胞的葡萄糖攝取作用會降低RANTES促進的RAW cell巨噬細胞的移行作用;在細胞路徑的探討上,在觀察時間中,RANTES會增加p-AKT Thr308、p-AKT Ser473以及p-AMPK Thr172的磷酸化,以及增加GLUT1在細胞膜上的表現,p-p65-NF-κB以及p-ERK則是沒有顯著的變化,而抑制PI3K、AMPK以及PLC都會顯著地降低RANTES促進的巨噬細胞葡萄糖攝取上升以及巨噬細胞移行能力上升,在接受器的探討上,抑制CCR1、CCR3及CCR5都會抑制RANTES促進的巨噬細胞葡萄糖攝取上升,但只有CCR1及CCR5會抑制RANTES促進的巨噬細胞移行能力上升;更進一步的實驗結果顯示,抑制了PLC以及CCR5後,會降低RANTES促進的巨噬細胞葡萄糖攝取上升及巨噬細胞移行能力上升,也會降低p-AKT Thr308、p-AKT Ser473以及p-AMPK Thr172的磷酸化;在THP-1細胞上,RANTES可以增加M0、M1及M2的葡萄糖攝取作用,而抑制了PI3K、AMPK以及CCR5後,都會顯著地降低RANTES促進的葡萄糖攝取上升;在巨噬細胞的活化上,RANTES不會增加TNF-α、IL-6以及CD206的基因表現,而會增加IL-10的基因表現,另外在IL-6的分泌也沒有顯著的變化。
由目前結果顯示,在巨噬細胞,RANTES會藉由CCR5接受器,活化下游的PI3K/AKT、AMPK以及PLC路徑,使得細胞膜上的GLUT1表現上升,增加葡萄糖的攝取作用,最終影響了巨噬細胞的移行作用,而在巨噬細胞的活化上,RANTES沒有顯著的影響。

Macrophage infiltration and activation plays a critical role in the development of tissue inflammation, especially in obesity-associated adipose tissue inflammation. Chemokine RANTES (also known as CCL5) has been reported to promote macrophage infiltration and its receptor CCR5 is associated with macrophage activation, but the detailed mechanism is unclear. The aim of current study is to investigate the role of RANTES signaling in the regulation of macrophage migration and activation through RANTES-mediated glucose uptake.
The present result showed that RANTES increased macrophage migration and glucose uptake in a time and dose dependent manner in RAW cell model. Blockade of glucose uptake by 2-DG significantly inhibited RANTES -induced macrophage migration. RANTES could induce membrane GLUT1 expression as well as phosphorylation of AKT on Thr308、Ser473 and AMPK on Thr172 in RAW cells, but the phosphorylation of p65-NF-κB and ERK was unchanged during the observed period. In addition, inhibition of PI3K、 AMPK and PLC could significantly suppress RANTES-induced macrophage migration and glucose uptake. We also demonstrated that blockade of CCR1 and CCR5 but not CCR3 could inhibit RANTES -induced macrophage glucose uptake and also suppress RANTES -induced macrophage migration. Moreover, Inhibition of PLC and CCR5 could decrease the ability of macrophage migration and glucose uptake in a dose-dependent manner and decrease the phosphorylation of AKT on Thr308、Ser473 and AMPK on Thr172. In THP-1 macrophage cell line, RANTES could increase glucose uptake in M0、M1 and M2 type macrophage. Inhibition of PI3K、AMPK and CCR5 could suppress RANTES-induced macrophage glucose uptake. In respect of macrophage activation, there was not changed in the gene expression of TNF-α、IL-6 and CD206, but IL-10 gene expression was significantly increased after adding RANTES. Besides, the secretion of IL-6 which is M1 type marker was unchanged in treated RANTES group compared to untreated RANTES control.
Taken together, the present findings indicate that RANTES could be via CCR5 receptor to activate PLC signaling to increase phosphorylation of PI3K and AMPK thus increase GLUT1 membrane expression. As a result, macrophage glucose uptake was increased and then regulated macrophage migration. However, RANTES didn’t affect the process of macrophage activation.

目錄
圖目錄 IV
中文摘要 VII
Abstract IX
第一章、前言 1
第一節 肥胖的定義 1
第二節 巨噬細胞浸潤與肥胖 2
第三節 巨噬細胞活化與肥胖 3
第四節 趨化素(chemokine)與巨噬細胞浸潤 3
第五節 趨化素(chemokine)與巨噬細胞活化 5
第六節 RANTES (CCL5)與其接受器 5
第七節 RANTES (CCL5)路徑與巨噬細胞浸潤和活化 6
第八節 葡萄糖攝取作用與巨噬細胞浸潤和活化 7
第九節 假說 9
第二章、 實驗目的 10
第三章、材料與方法 11
第一節、實驗材料 11
第二節、儀器設備 11
第三節、化學製劑 12
第四節、實驗設計 15
第五節、實驗方法 17
RAW cell、 THP-1 cell培養及繼代 17
活化THP-1 human monocyte 17
葡萄糖攝取實驗 17
細胞移行實驗 18
mRNA基因表現測定 18
膜蛋白萃取 20
西方墨點法 21
細胞激素測定(ELISA) 24
第六節、統計方法 25
第四章、實驗結果 26
一、RANTES對於小鼠巨噬細胞株RAW 264.7葡萄糖攝取作用的影響 26
二、葡萄糖攝取作用對於小鼠巨噬細胞株RAW 264.7移行作用的影響 26
三、RANTES對於RAW 264.7 之AKT磷酸化之影響 27
四、RANTES對於RAW 264.7 之AMPK磷酸化之影響 27
五、RANTES對於RAW 264.7 之GLUT1表現之影響 28
六、PI3K/AKT及AMPK在RANTES訊息傳遞中可能的交互影響 29
七、RANTES對於RAW 264.7 之NF-κB及ERK表現之影響 29
八、PI3K/AKT及AMPK路徑在RANTES促進之巨噬細胞葡萄糖攝取上升及移行能力上升的機轉中所扮演的角色 30
九、CCR1、CCR3及CCR5在RANTES促進之巨噬細胞葡萄糖攝取上升及移行能力上升的機轉中所扮演的角色 30
十、PLC路徑在RANTES促進之巨噬細胞葡萄糖攝取作用上升及移行能力上升的機轉中所扮演的角色 31
十一、RANTES/CCR5路徑在RANTES促進之巨噬細胞葡萄糖攝取上升及移行能力上升的機轉中所扮演的角色 32
十二、RANTES/CCR5路徑對RANTES促進之AKT、AMPK磷酸化上升及膜上GLUT1表現上升的機轉中所扮演的角色 32
十三、PLC路徑對RANTES促進之AKT、AMPK磷酸化上升的機轉中所扮演的角色 33
十四、RANTES對於人類單核球細胞株THP-1分化之M0、M1、M2巨噬細胞葡萄糖攝取作用的影響 33
十五、PI3K/AKT及AMPK路徑在RANTES促進之THP-1分化之M0、M1、M2巨噬細胞葡萄糖攝取作用所扮演的角色 34
十六、RANTES/CCR5路徑在RANTES促進之THP-1分化之M0、M1、M2巨噬細胞葡萄糖攝取作用所扮演的角色 35
十七、RANTES對巨噬細胞活化的影響 35
第五章、討論 37
第六章、結論 48
參考文獻 49

1.Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet, 2004. 363(9403): p. 157-63.
2.Kopelman, P.G., Obesity as a medical problem. Nature, 2000. 404(6778): p. 635-43.
3.Hotamisligil, G.S., et al., Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest, 1995. 95(5): p. 2409-15.
4.Gustafson, B., et al., Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol, 2007. 27(11): p. 2276-83.
5.Wellen, K.E. and G.S. Hotamisligil, Obesity-induced inflammatory changes in adipose tissue. J Clin Invest, 2003. 112(12): p. 1785-8.
6.de Luca, C. and J.M. Olefsky, Inflammation and insulin resistance. FEBS Lett, 2008. 582(1): p. 97-105.
7.Weisberg, S.P., et al., Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest, 2003. 112(12): p. 1796-808.
8.Xu, H., et al., Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest, 2003. 112(12): p. 1821-30.
9.Rocha, V.Z., et al., Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ Res, 2008. 103(5): p. 467-76.
10.Lumeng, C.N., J.L. Bodzin, and A.R. Saltiel, Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest, 2007. 117(1): p. 175-84.
11.Odegaard, J.I., et al., Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature, 2007. 447(7148): p. 1116-20.
12.Nguyen, K.D., et al., Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature, 2011. 480(7375): p. 104-8.
13.Whittle, A.J. and A. Vidal-Puig, Physiology: Immune cells fuel the fire. Nature, 2011. 480(7375): p. 46-7.
14.Zlotnik, A., O. Yoshie, and H. Nomiyama, The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol, 2006. 7(12): p. 243.
15.Kitade, H., et al., CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status. Diabetes, 2012. 61(7): p. 1680-90.
16.Kanda, H., et al., MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest, 2006. 116(6): p. 1494-505.
17.Weisberg, S.P., et al., CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest, 2006. 116(1): p. 115-24.
18.Tamura, Y., et al., C-C chemokine receptor 2 inhibitor improves diet-induced development of insulin resistance and hepatic steatosis in mice. J Atheroscler Thromb, 2010. 17(3): p. 219-28.
19.Nishimura, S., et al., CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med, 2009. 15(8): p. 914-20.
20.Kaufmann, A., et al., Increase of CCR1 and CCR5 expression and enhanced functional response to MIP-1 alpha during differentiation of human monocytes to macrophages. J Leukoc Biol, 2001. 69(2): p. 248-52.
21.Oghumu, S., et al., CXCR3 deficiency enhances tumor progression by promoting macrophage M2 polarization in a murine breast cancer model. Immunology, 2014.
22.Struyf, S., et al., Diverging binding capacities of natural LD78beta isoforms of macrophage inflammatory protein-1alpha to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. Eur J Immunol, 2001. 31(7): p. 2170-8.
23.Dorsam, R.T. and J.S. Gutkind, G-protein-coupled receptors and cancer. Nat Rev Cancer, 2007. 7(2): p. 79-94.
24.Turner, L., S.G. Ward, and J. Westwick, RANTES-activated human T lymphocytes. A role for phosphoinositide 3-kinase. J Immunol, 1995. 155(5): p. 2437-44.
25.Bacon, K.B., T.J. Schall, and D.J. Dairaghi, RANTES activation of phospholipase D in Jurkat T cells: requirement of GTP-binding proteins ARF and RhoA. J Immunol, 1998. 160(4): p. 1894-900.
26.Huang, C.Y., et al., CCL5 increases lung cancer migration via PI3K, Akt and NF-kappaB pathways. Biochem Pharmacol, 2009. 77(5): p. 794-803.
27.Tyner, J.W., et al., CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat Med, 2005. 11(11): p. 1180-7.
28.Chan, O., et al., The chemokine CCL5 regulates glucose uptake and AMP kinase signaling in activated T cells to facilitate chemotaxis. J Biol Chem, 2012. 287(35): p. 29406-16.
29.Chuang, J.Y., et al., CCL5/CCR5 axis promotes the motility of human oral cancer cells. J Cell Physiol, 2009. 220(2): p. 418-26.
30.Wu, H., et al., T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation, 2007. 115(8): p. 1029-38.
31.Keophiphath, M., et al., CCL5 promotes macrophage recruitment and survival in human adipose tissue. Arterioscler Thromb Vasc Biol, 2010. 30(1): p. 39-45.
32.Montecucco, F., et al., CC chemokine CCL5 plays a central role impacting infarct size and post-infarction heart failure in mice. Eur Heart J, 2012. 33(15): p. 1964-74.
33.Liou, J.T., et al., Absence of C-C motif chemokine ligand 5 in mice leads to decreased local macrophage recruitment and behavioral hypersensitivity in a murine neuropathic pain model. Pain, 2012. 153(6): p. 1283-91.
34.Sigrist, S., et al., Activation of human macrophages by allogeneic islets preparations: inhibition by AOP-RANTES and heparinoids. Immunology, 2004. 111(4): p. 416-21.
35.Zamilpa, R., et al., CC chemokine receptor 5 deletion impairs macrophage activation and induces adverse remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol, 2011. 300(4): p. H1418-26.
36.Kennedy, A., et al., Loss of CCR5 results in glucose intolerance in diet-induced obese mice. Am J Physiol Endocrinol Metab, 2013. 305(7): p. E897-906.
37.Elsegood, C.L., et al., Glucose metabolism is required for oxidized LDL-induced macrophage survival: role of PI3K and Bcl-2 family proteins. Arterioscler Thromb Vasc Biol, 2009. 29(9): p. 1283-9.
38.Fukuzumi, M., et al., Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1. Infect Immun, 1996. 64(1): p. 108-12.
39.Feingold, K.R., et al., Mechanisms of triglyceride accumulation in activated macrophages. J Leukoc Biol, 2012. 92(4): p. 829-39.
40.Freemerman, A.J., et al., Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem, 2014. 289(11): p. 7884-96.
41.Gamelli, R.L., et al., Augmentations of glucose uptake and glucose transporter-1 in macrophages following thermal injury and sepsis in mice. J Leukoc Biol, 1996. 59(5): p. 639-47.
42.Bian, Z., et al., CCN1 expression in hepatocytes contributes to macrophage infiltration in nonalcoholic fatty liver disease in mice. J Lipid Res, 2013. 54(1): p. 44-54.
43.Jordan, S.D., et al., Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol, 2011. 13(4): p. 434-46.
44.Zhang, W., et al., AMP-activated protein kinase alpha1 protects against diet-induced insulin resistance and obesity. Diabetes, 2012. 61(12): p. 3114-25.
45.Bentley, J., et al., Interleukin-3-mediated cell survival signals include phosphatidylinositol 3-kinase-dependent translocation of the glucose transporter GLUT1 to the cell surface. J Biol Chem, 2003. 278(41): p. 39337-48.
46.Furuichi, K., et al., Chemokine receptor CCR1 regulates inflammatory cell infiltration after renal ischemia-reperfusion injury. J Immunol, 2008. 181(12): p. 8670-6.
47.Wright, D.C., et al., The effects of phospholipase C inhibition on insulin-stimulated glucose transport in skeletal muscle. Metabolism, 2002. 51(3): p. 271-3.
48.Abbott, M.J., A.M. Edelman, and L.P. Turcotte, CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 2009. 297(6): p. R1724-32.
49.Wu, W.N., et al., Orexin-A activates hypothalamic AMP-activated protein kinase signaling through a Ca(2)(+)-dependent mechanism involving voltage-gated L-type calcium channel. Mol Pharmacol, 2013. 84(6): p. 876-87.
50.Vats, D., et al., Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab, 2006. 4(1): p. 13-24.
51.Liu, B., et al., The novel chemokine receptor, G-protein-coupled receptor 75, is expressed by islets and is coupled to stimulation of insulin secretion and improved glucose homeostasis. Diabetologia, 2013. 56(11): p. 2467-76

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊