跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 09:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李嘉玲
研究生(外文):Jia Ling Lee
論文名稱:變異的脂蛋白解脂酵素之研究
論文名稱(外文):Study of the mutated lipoprotein lipase
指導教授:高照村高照村引用關係
指導教授(外文):Jau Tsuen Kao
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫事技術學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:89
中文關鍵詞:脂蛋白解脂精胺酸溶小體粗糙內質網高基氏體
外文關鍵詞:lipoprotein lipaseargininelysosomerough endoplasmic reticulumgolgi apparatus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:380
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
脂蛋白解脂是血漿脂質代謝不可缺的酵素,它是一種分泌型的醣蛋白,由許多的實質細胞分泌後,會與 Heparan sulfate proteoglycan 產生的離子交互作用而附著於微血管壁上,藉由脂蛋白元 CII的活化,脂蛋白解脂可將血液中的極低密度脂蛋白與乳糜微粒所富含的三酸甘油酯水解,而分解成甘油、二酸甘油及游離脂肪酸,後者可當作能量的來源或在週邊組織細胞再酯化而儲存。而在脂蛋白的代謝過程中,脂蛋白解脂會促進血漿內脂蛋白間的交換,間接影響血漿中各種脂蛋白的重塑。因此脂蛋白解脂與脂蛋白的代謝有密切的關係。在臨床上當脂蛋白解脂基因缺陷時,將造成原發性高三酸甘油酯血症,同時當功能異常時也會產生許多疾病包含肥胖、心臟血管疾病、動脈血管硬化、高乳糜微粒血症及胰臟炎等。因此脂蛋白解脂在高三酸甘油酯血症及心臟血管疾病中扮演重要的角色。
對於脂蛋白解脂而言,在細胞內的製造過程是一個重要的調控步驟,但是目前對於脂蛋白解脂在細胞內的製造、運送及分泌機轉不甚清楚。由於本實驗室於先前在國人高三酸甘油酯病人身上發現第252位置白胺酸突變為精胺酸,因此我們想藉由觀察脂蛋白解脂在細胞內的分佈進一步了解第252位置的白胺酸在脂蛋白解脂的功能與在細胞內的調控機制。首先利用定點突變以建構表達突變型脂蛋白解脂pCR3-L252R 之質體及表達野生型脂蛋白解脂 pCR3-L252L 之質體,再將質體轉感入人類腎臟293細胞來分析此兩種不同型之脂蛋白解脂在細胞內之表現。由西方墨點法得知野生型與突變型所表現之脂蛋白解脂在電泳上之移動速度一樣且皆能被特異性抗體認識。然而 L252R 突變型分泌至細胞外表現量為野生型的14%,活性為野生型的17%,但在細胞內的表現量卻有74%,而活性只有6%,推測可能因酵素功能的改變而造成分泌機轉的訊息錯誤。為瞭解脂蛋白解脂在細胞內的分佈情形,我們以光學顯微鏡觀察細胞中 DAB 色素原及以共軛焦顯微鏡觀察免疫螢光的分佈狀況,發現突變型脂蛋白解脂分佈於細胞質中較靠近細胞核邊,另外以免疫電子顯微鏡來觀察,則發現突變型脂蛋白解脂幾乎都堆積於溶小體,所以造成脂蛋白解脂在細胞內不會有效的分泌出去。因此推測第252 位置與結構有關,同時合成之過程也可能有關係。

Lipoprotein lipase (LPL) has an important function in the regulation of plasma lipid metabolism. LPL is a secretory glycoprotein, which is synthesized in parenchymal cells of several tissues and active-bound to the luminal surface of vascular endothelium through anchored by ionic interaction with heparan sulfate proteoglycan. In the presence of apolipoprotein CII, LPL hydrolyzes the triacylglycerol core of circulating very-low-density lipoprotein (VLDL) and chylomicrons (CM), generating glycerol, diacylglycerol, and free fatty acid for energy or re-esterification in peripheral tissues. Throughout the lipolysis-mediated process, LPL promotes the exchange of lipid between lipoproteins and is indirectly involved remodeling of the lipoproteins. Hence, LPL is strongly associated with the metabolism of lipoprotein. LPL deficiency is the basic defect of type I hyperlipidemia, and also related to many diseases including obesity, coronary heart disease, atherosclerosis, chylomicronemia, and pancreatitis. Therefore LPL defects play an important role in hypertriglyceridemia and cardiovascular diseases.
Intracellular LPL processing is an important regulation step, but the mechanisms for processing, transportation, and secretion are poorly understood. In our previous study, we found that the molecular defect of the LPL gene in Taiwanese involved mutation of leucine to arginine at residue 252. This study is to elucidate the intracellular distribution of the
mutant protein. Human LPL (hLPL) cDNA was mutated by site-directed mutagenesis to construct the mutant L252R hLPL. Mutant L252R and wild type hLPL, expressed in HEK 293 cells, were analyzed for the differences between them. Immunoblotting of cell lysates and media showed that both constructs expressed LPL of the same molecular weight. The extracellular LPL level of the mutant was 14% and the activity 17% of the wild type, respectively. Moreover, the intracellular mutant LPL mass was 74% and the activity 6% of the wild type. This indicated defective secretion of mutant LPL. By using sensitive diaminobenzidine staining and immunofluorescence labeling under confocal microscope the mutant LPL was located near the nucleus. The result was further verified by immunoelectron microscope, which showed DAB staining accumulation in lysosome. The result indicated that the L252R hLPL was inefficiently secreted into the medium, and missorted to lysosomes for intracellular degradation. Further analysis of the structure and synthesis processing.of this mutant LPL is necessary.

總 目 次
誌謝 ---------------------------------------------------------I
中文摘要 ----------------------------------------------------II
Abstract --------------------------------------------------- IV
縮寫表 ------------------------------------------------------VI
中英文對照表 -----------------------------------------------VIII
總目次 ------------------------------------------------------ X
圖目次 ----------------------------------------------------- XI
表目次 ----------------------------------------------------- XII
導論 -------------------------------------------------------- 1
材料與方法 -------------------------------------------------- 10
結果 -------------------------------------------------------- 24
討論 -------------------------------------------------------- 29
附圖 ---------------------------------------------------------34
附表 ---------------------------------------------------------51
實驗流程 -----------------------------------------------------61
參考文獻 -----------------------------------------------------83
圖目次
圖一:選殖序列方向之確認 -------------------------------------34
圖二:人類脂蛋白解脂 cDNA 野生型 pCR3-L252L 與突變型
pCR3-L252R 之序列圖 -----------------------------------35
圖三:表現蛋白的西方墨點分析圖 -------------------------------36
圖四:表現蛋白的活性時效分析圖 -------------------------------37
圖五:培養液表現蛋白的活性分析圖、比較圖 -------------------- 38
圖六:細胞溶解產物的表現蛋白活性分析圖、比較圖 -------------- 39
圖七:培養液蛋白表現量的分析圖、比較圖----------------------- 40
圖八:細胞溶解產物蛋白表現量的分析圖、比較圖 -----------------41
圖九:多株抗體純化 ------------------------------------------ 42
圖十:利用 DAB stain 觀察表現蛋白的分佈圖 ------------------- 43
圖十一:利用免疫螢光標誌觀察表現蛋白的分佈圖----------------- 45
圖十二:利用電子顯微鏡觀察細胞內表現蛋白的分佈圖------------- 48
表 目 次
表一:人類脂蛋白解脂的基本特性 -----------------------------51
表二:人類脂蛋白解脂的基因結構 -----------------------------52
表三:人類脂蛋白解脂的基因功能與結構之分類 -----------------54
表四:人類脂蛋白解脂之基因缺陷(非載意區)------------------55
表五:人類脂蛋白解脂之基因缺陷(載意區)--------------------56
表六:台灣地區人民新發現的脂蛋白解脂基因突變病人的突變資
料 -----------------------------------------------------59
表七:不同動物間脂蛋白解脂和肝臟解脂在 LPL252附近胺基酸
序列之比較 ---------------------------------------------59
表八:共同轉感人類293 細胞及半乳醣之細胞之細胞溶解產物
與培養液濃度及活性之比例分析 -------------------------- 60

參考文獻
1. Hahn PF. Abolishment of alimentary lipemia following
injection of heparin. Science.1943;98:166-67.
2. Korn ED. Clearing factor, a heparin-activated lipoprotein
lipase. I. isolation and characterization of the enzyme from
normal rat heart. J. Biol. Chem.1954;215:1-14.
3. LaRosa JC, Levy RI, Windmueller HG, and Fredrickson DS.
Comparison of the triglyceride lipase of liver, adipose
tissue, and postheparin plasma. J. Lipid. Res.1972;13:356-63.
4. Krauss RM, Herbert PN, Levy RI, and Fredrihckson DS. Further
observations on the activation and inhibition of lipoprotein
lipase by apolipoproteins. Circulation Res.
1973;33:403-11.
5. Havel RJ, and Gordon Jr. RS. Idiopathic hyperlipidemia :
metabolic studies in an affected family. J. Clin.
Invest.1960;39:1777-90.
6. Krauss RM, Windmueller HG, Levy RI, and Fredrickson DS.
Selective measurement of two different triglyceride lipase
activities in rat postheparin plasma. J. Lipid. Res.1973;
14:286-95.
7. Breckenridge WC, Little JA, Steiner G, Chow A, and Poapst M.
Hypertriglyceridemia associated with deficiency of
apolipoprotein C-II. New England Journal of Medicine.1978;
298:1265-73.
8. Wong H, Davis RC, Thuren T, Goers JW, Nikazy J, Waite M, and
Schotz MC. Lipoprotein lipase domain function. J. Biol.
Chem.1994;269:10319-23.
9. Braun JE, and Severson DL. [Review] Regulation of the
synthesis, processing and translocation of lipoprotein
lipase. Biochem J.1992;287:337-47.
10.Camps L, Reina M, Llobera M, Vilaro S, and Olivecrona T.
Lipoprotein lipase : cellular origin and functional
distribution. American J. Physiology.1990;258:c673-81.
11.Bengtsson G, and Olivecrona T. Interaction of lipoprotein
lipase with heparin-Sepharose. Evulation Of conditions for
affinity binding. Biochem J.1977;167:109-119.
12.Olivecrona T, and Bengtsson-Olivecrona G. Lipoprotein
lipase and hepatic lipase. Curr Opin Lipidol.1993;4:187-196.
13.Rudolf Z. The tissue-specific expression of lipoprotein
lipase : implication for energy and lipoprotein metabolism.
Genetic and Molecular Biology.1997;8:77-88.
14.Goldberg IJ, Le NA, Ginsberg HN, Krauss RM, and Lindgren
FT. Lipoprotein metabolism during acute inhibition of
lipoprotein lipase in the cynomolgus monkey. J. Clin.
Invest.1988;81:561-8.
15.Skottova N, Savonen R, Lookene A, Hultin M, and Olivecrona
G. Lipoprotein lipase enhances removal of chylomicrons and
chylomicron remnants by the perfused rat liver. J. Lipid.
Res.1995;36:1334-1344.
16.Nilsson-Ehle P, Garfinkel AS, and Schotz MC. [Review]
Lipolytic enzymes and plasma lipoprotein metabolism. Annual
Review of Biochem.1980;49:667-93.
17.Oliverona T, and Bengtsson OG. Lipoprotein lipase from milk
the model enzyme in lipoprotein lipase reserch. In
Lipoprotein Lipase,1987;p.15-58, Borensztajn J,(ed.)
Evener Publishers, Inc., Chicago.
18.Kirchgessner TG, LeBoeuf RC, Langner CA, Zollman S, Chang
CH, Taylor BA, Schotz MC, Gordon JI, and Lusis AJ﹒Genetic
and developmental regulation of the lipoprotein
lipase gene : loci both distal and proximal to the
lipoprotein lipase structural gene control enzyme
expression. J. Biol. Chem.1989;264:1473-82.
19.Sparkes RS, Zollman man S, Klisak I, Kirchgessner TG,
Komaromy MC, Mohandas T, Schotz MC, and Lusis AJ. Human
genes involved in lipolysis of plasma lipoproteins :
mapping of loci for lipoprotein lipase to 8p22 and hepatic
lipase to 15q21. Genomics.1987;1:138-44.
20.Wion KL, Kirchgessner TG, Lusis AJ, Schotz MC, and Lawn RM.
Human lipoprotein lipase complementary DNA sequence.
Science.1987;235:1638-41.
21.Deeb SS, and Peng RL. Structure of the human lipoprotein
lipase gene. Biochemistry.1989;28:4131-35.
22.Kirchgessner TG, Svenson KL, Lusis AJ, and Schotz MC. The
sequence of cDNA encoding lipoprotein lipase. J. Biol. Chem.
1987;262:8463-66.
23.Langlois S, Deeb S, Brunzell JD, Kastelein JJ, and Hayden
MR. A major insertion accounts for a significant proportion
of mutations underlying human lipoprotein lipase deficiency.
Proceedings of the National Academy of Sciences of the
United States of America.1989;86:948-52.
24.Murthy V, Julein P, and Gagne C. Molecular pathobiology of
the human lipoprotein lipase gene. Pharmacology &
Therapeatics.1996;70:101-35.
25.Ma Y, Ooi TC, Liu MS, Zhang H, McPheraon R, Edwards AL,
Forsythe IJ, Frohlich J,Brunzell JD,and Hayden MR. High
frequency of mutations in the human lipoprotein lipase gene
in pregnancy-induced cylomicronemia : possible association
with apolipoprotein E2 isoform. J. Lipid. Res.1994;35:1066-
1075.
26.Funke H, Wiebusch H, Paulwebe B, and Assman G.
Identification at the molecular detect in a patient with
Type I hyperlipidemia. Artheriosclerosis.1990;10:830.
27.Wiebusch H, Funke H, Kastelein JJ P, Bruin T, Pometta D,
Armstrong V, and Assman G. Mutations in the lipoprotein
lipase gene are not restricted to patients with type I
hyperlipidemia. Circulation.1992;86:1-9.
28.Benlian P, Etienne J, de Gennes JL, Noe L, Brault D,
Raisonnier A, Arnault F, Hamelin J, Foubert L, Chuat JC, Tse
C, and Galibert F. Homozygous deletion at exon 9 causes
lipoprotein lipase deficiency:possible intron-
Alurecombination. J. Lipid. Res.1995;36:356-366.
29.Foubert Lt Gagne E, De Gennes JL, Ma Y, Forsythe I, Liu Ms,
Zhang H, Dairou F,Lagarde JP, Benlian P, and Hayden MR. An
analysis of mutations (LPL) deficiency in France underlying
lipoprotein lipase. Atherosclerosis.1994;109:67.
30.Wilson DE, EdWards CQ, and Chan IF. Phenotypic
heterogeneity in the extended pedigree of a proband with
lipoprotein lipase deficiency. Metabolism Clinical &
Experimental.1983;32:1107-14.
31.Reymer PW, Gagne E, Groenemeyer BE, Zhang H, Forsyth,
Jansen H, Seidell JC, Kromhout D, Lie KE, Kastelein J, and
Hayden MR. A lipoprotein lipase mutation (Asn29lSer) is
associated with reduced HDL cholesterol levels in
premature atherosclerosis. Nature Genetics.1995;10:28-34.
32.Breckenridge WC, Little JA, Steiner G, Chow A, and Poapst
M. Hypertriglyceridemia associated with deficiency of
apolipoprotein CII. N.Engl.J.Med.1978;298:1265-1273.
33.Harlan ER, Winesett J.r. PS, and Wasserman AJ. Tissue
lipoprotein lipase in normal individuals and in individuals
with exogenous hypertriglyceridemia and the relationship of
this enzyme to association of fat. J. Clin. Invest.1967;
46:239-247.
34.Robert H, and Eckel MD. A Multifunctional enzyme trlevant to
common metabolic diseases.1989;320:1060-1068.
35.Wilson DE, Edwards CQ, and Chan IF. Phenotypic
heterogeneity in the extended pedigree of a proband with
lipoprotein lipase deficiency. Metabolism Clinical &
Experimental.1983;32:1107-1114.
36.Goldstein JL, Schrott HG, Hazzarg WR, Bierman EL, and
Motulsky AG. Hyperlipidemia in coronary heart disease II.
Genetic analysis of lipid levels in 176 families and
delineation of a new inherited disorder, combind
hyperlipidemia. J. Clin. Invest.1973;52:1544-1568.
37.Nikkila EA, Tashinen MR, and Huttunen JK. Effects of acute
ethanol load on postheparin plasma lipoprotein lipase and
hepatic lipase activites in intravenous fat tolerance. Horn
Metabolism Research.1978;10:220-3.
38.Lithell H, Boberg J, and Hellsing K et al. Serum lipoprotein
and apolipoprotein concentrations and tissue lipoprotein-
lipase activity in over and subclinical hypothyroidism:the
effect of substitution therapy Europe. J. Clin Invest.1981;
11:3-10.
39.Teskinen MR. Lipoprotein lipase in hypertriglyceridemia.
Borensztajn J, ed. Lipoprotein lipase. Chicago : Evener.
1978;1:406-17.
40.Chait A, and Brunzell JD. Severe hypertriglyceridemia : role
of familial and acquired disorders. Metabolism.1983;32:209-
14.
41.Keilson LM, Vary CP, Sprecher DL, and Renfrew R.
Hyperlipidemia and pancreatitis during pregnancy in two
sisters with a mutation in the lipoprotein lipase gene.
Annals of lnternal Medicine.1996;124:425-28.
42.Hayden MR, Liu MS, and Ma Y. [Review] Gene environment
interaction and plasma triglyceride level is the crucial
role of lipoprotein lipase. Clinical Genetics.1994;46:15-18.
43.Busca R, Martinez M, Vilella E, Pognonec P, Deeb S, Auwex J,
Rrina M, and Vilaro S.The mutation Gly 142 Glu in human
lipoprotein lipase produces a missorted protein that is
diverted to lysosomes. J. Biol. Chem.1996;271:2139-2146.
44.Santamarina-Fojo, S. Curr. Opin. Lipidol.1992;3:86.
45.Semenkovich CF, Luo CC, Nakanishi MK, Chen SH, Smith LC,
and Chan L. In vitro expression and site-specific
mutagenesis of the cloned human lipoprotein lipase gene.
J. Biol. Chem.1990;265:5429-5433.
46.Amies D, and Kobayashi. Familial chylomicronemia (type I)
due to a single missense mutation in the lipoprotein lipase
gene. J. Clin. Invest.1991;87:1165-1170.
47.Rudling MJ, Reihner E, Einarsson K, Ewerth S, and Angelin
B. Low density lipoprotein receptor-binding activity in
human tissues : Quantitative importance of hepatic receptors
and evidence for regulation of their expression in vivo.
Proceeding of the National Academy of Sciences of the United
States of American.1990;87:3474-3478.
48.Emi M, Wilson DE, Iverius PH, Wu L, Hata A, Hegele R,
Willion RR, and Laloule JM.Missense mutation (GlyGlu88) of
human lipoprotein lipase imparting functional deficiency. J.
Biol. Chem.1990;265:5910-5916.
49.Henderson HE, Ma Y, Hassan MF, Monsalve MV, Marais AD,
Winkler F, Gubernator K, Peterson J, Brunzell JD, and Hayden
MR. Amino Acid Substitution (Ilel94Thr) in exon 5 of the
lipoprotein lipase gene causes lipoprotein lipase deficiency
in the three unrelated probands. J. Clin. Invest.1991;87:
2005-2011.
50.Barik S. Site-directed mutagenesis by double polymerase
chain reaction. Molecular Biotechnology.1995;3:1-7.
51.Joly E. Preparation of plasmid DNA using alkaline lysis.
Methods in Molecular Biology.1996;58:257-63.
52.Kramer W, Prutsa V, Jansen HW, Kramer B, Phlugfelder M, and
Fretz HJ. The gapped duplex DNA approach to oligonucleotide-
directed mutation construction. Nuleic Acid Res.1984;12:9441-
56.
53.Liu MS, Ma Y, Hayden MR, and Brunzell JD. The epitope on
lipoprotein lipase recognized by a monoclonal antibody (5D2)
which inhibits lipase activity. Biochim. Biophys. Acta.
1992;1128:113-115.
54.Nilsson-Ehle P, and Schotz MC. Astable, radioactive
substrate emulsion for assay of lipoprotein. J. Lipid. Res.
1976;17:536-41.
55.Lanciego JL, Geode PH, Witter MP, and Wouterlood FG. Use of
peroxidase substrate vector VIP for multiple staining in
light microscopy. J. Neuroscience Methods.1997;74:1-7.
56.Torresani C, Manara GC, Ferrari C, and Panfilis GD.
Immunoelectron microscopic characterization of a
subpopulation of freahly isolated epidermal langerhans cells
that reacts with anti-CD23 monoclonal antibody. Bristish J.
Dermatology.1991;124:535-537.
57.Huey PU, Marcell T, Owens GC, Etienne J, and Eckel RH.
Lipoprotein lipase is expressed in cultured Schwann cells
and functions in lipid synthesis and utilization. J. Lipid.
Res.1998;39:2135-2142.
58.Masuno H, Schultz CJ, Park JW, Blanchette-Mackie EJ, Mateo
C, and Scow RO. Glycosylation, activity and secretion of
lipoprotein lipase in cultured brown adipocytes of newborn
mice. Biochem J.1991;277:801-809.
59.Busca R, Pujana MA, Pognonec P, Auwerx J, Deeb S, Reina M,
and Vilaro S. Absence of N-glycosylation at asparagine 43 in
human lipoprotein lipase induces its accumulation in
the rough endoplasmic reticulum and alters this cellular
compartment. J. Lipid. Res.1995;36:939-951.
60.Halban PA, and Irminger CM. [Review] Sorting and processing
of secretory protein. Biochem. J.1994;299:1-18.
61.Ailhaud G. Cellular and secreted lipoprotein lipase
revisited. Clinical Biochemistry.1990;23:343-347.
62.Hata A,* Emi M, Luc G, Basdevant A, Gambert P, Per-Henrik
lverius, and Jean-Marc Lalouel. Compound heterozygote for
lipoprotein lipase deficiency : SerThr244 and Transition
in 3’ splice site of intron 2 (AGAA) in the lipoprotein
lipase gene. Am. J. Hum. Genet.1990;47:721-726.
63.Faustinella F, Smith LC, Semenkovich CF, and Chan L.
Structural and functional role of highly conserved serines
in human lipoprotein lipase. J. Biol. Chem.1991;266:9481-85.
64.Foubert L, Gagne E, De Gennes JL, Ma Y, Forsythe I, Liu MS,
Zhang H, Dairou F, Lagarde JP, Benlian P, and Hayden MR. An
analysis of mutations underlying lipoprotein lipase (LPL)
deficiency in France. Atherosclerosis.1994;109:67-68.
65.Winkler FK, Arch AD, and Hunziker W. Structure of human
pancreatic lipase. Nature.1990;343:771-74.
66.Wang CS, Hartsuck J, and McConathy WJ. Structure and
functional properties of lipoprotein lipase. Biochim.
Biophys. Acta.1992;1123:1-17.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 徐南麗、王培文(民 86). 護理活動單項成本分析. 榮總護理,14(1),94-101。
2. 杜敏世、李鍾祥 (民 79). 台北市某市立醫院居家護理服務模式之成本分析. 公共衛生,17(2),181-194。
3. 杜敏世、李鍾祥 (民 79). 台北市某市立醫院居家護理服務模式之成本分析. 公共衛生,17(2),181-194。
4. 石美春 (民 85). 成本效益、成本效果及成本效用分析法之簡介. 醫院,29(5),9-13。
5. 石美春 (民 85). 成本效益、成本效果及成本效用分析法之簡介. 醫院,29(5),9-13。
6. 徐南麗、王培文(民 86). 護理活動單項成本分析. 榮總護理,14(1),94-101。
7. 陳姿伶、王琪珍、吳秀麗、楊月嬌、吳怡慧(民 86). 尿管留置病患發生院內泌尿道感染之危險性探討. 護理研究,5,259-266。
8. 陳姿伶、王琪珍、吳秀麗、楊月嬌、吳怡慧(民 86). 尿管留置病患發生院內泌尿道感染之危險性探討. 護理研究,5,259-266。
9. 舒坤鳳 (民 83). 一位下運動神經原神經性膀胱功能障礙患者膀胱訓練之護理經驗. 榮總護理,11,324-330。
10. 舒坤鳳 (民 83). 一位下運動神經原神經性膀胱功能障礙患者膀胱訓練之護理經驗. 榮總護理,11,324-330。
11. 傅玲 (民 84). 手術成本分析方法與應用. 護理雜誌,42(4),20-24。
12. 傅玲 (民 84). 手術成本分析方法與應用. 護理雜誌,42(4),20-24。
13. 楊奉儒(1997),「高科技廢棄物之再生」,工業材料,V.128, pp 106-111。
14. 楊奉儒(1997),「高科技廢棄物之再生」,工業材料,V.128, pp 106-111。
15. 榮泰生(1994),「DSS之軟體與工具」,自動化科技,V. 128. pp. 63—70。