跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/05 02:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃景榮
研究生(外文):Huang Jing-Rong
論文名稱:探討鳳梨酵素對內毒素引起發炎因子之抑制機轉
論文名稱(外文):Mechanism of bromelain on the inhibition of LPS-induced inflammatory factors.
指導教授:鄭啟清鄭啟清引用關係
指導教授(外文):Jeng Kee-Ching
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:89
中文關鍵詞:鳳梨酵素發炎內毒素
外文關鍵詞:bromelaininflammatoryLPS
相關次數:
  • 被引用被引用:6
  • 點閱點閱:6088
  • 評分評分:
  • 下載下載:620
  • 收藏至我的研究室書目清單書目收藏:2
中 文 摘 要
鳳梨酵素是從鳳梨之莖幹部分離之粗萃取物,具有多種藥理效能,如抗血液栓塞、抗水腫、抗發炎及抗癌等效能,但其抗發炎途徑尚未被人們所確定。因此本實驗之目的,在利用人類周邊血液單核細胞及人類血癌細胞株THP-1細胞來研究鳳梨酵素藉由抑制何種路徑,來抑制發炎反應。本實驗以不同濃度之鳳梨酵素(1、10、30、50、70、100 μg/ml)處理經內毒素刺激之人類周邊血液單核細胞及THP-1細胞,首先分析鳳梨酵素及內毒素對細胞毒性之影響。然後以免疫酵素分析法(ELISA)分析這些細胞經內毒素刺激所產生發炎因子TNF-α、IL-1β及IL-6之濃度,並進一步以反轉錄聚合酶連鎖反應(RT-PCR)偵測這些細胞的介白質基因mRNA之變化。結果發現鳳梨酵素在50-100 μg/ml之濃度下,有顯著抑制發炎因子之產生。由於此作用可能經酵素作用產生,因此利用重組蛋白研究並證實,鳳梨酵素亦可水解發炎因子TNF-α及IL-1β兩種基因重組製成蛋白質。此外,經ELISA分析細胞培養上清液,發現鳳梨酵素可以有效地降低THP-1細胞所產生的前列腺素(PGE2),以RT-PCR分析其上游基因COX-2,發現鳳梨酵素亦可抑制此基因表現。再以西方點墨法(Western blot)分析其發炎信號傳導途徑,在LPS與鳳梨酵素作用30秒後,發現鳳梨酵素在50-100 μg/ml之濃度下,顯著的抑制MAPK (p38、ERK1/2及JNK1/2)的磷酸化。經ELISA分析,鳳梨酵素亦可以降低轉錄因子nuclear-factor kappa B (NF-κB)在細胞核內之含量。最後在抑制鳳梨酵素其酵素活性後,再以西方點墨法分析MAPK磷酸化,發現其抑制效果大幅降低,只可部分的抑制ERK-2及JNK1/2的磷酸化。綜合上述結果,當巨噬細胞受刺激而活化時,鳳梨酵素能抑制發炎因子TNF-α、IL-1β、IL-6及PGE2之產生,其作用機轉可能是經由抑制MAPK的磷酸化及NF-κB的活化。而其酵素活性為抑制發炎反應的一重要因子。
Abstract
Bromelain is a crude extract from the pineapple stem. Bromelain has a lot of physiological effects, such as anti-thrombotic, anti-edematous, anti-inflammatory, and anti-cancer activities. It has been shown that oral therapy with proteolytic enzymes including bromelain produces certain analgesic and anti-inflammatory effect in certain patients with rheumatic diseases. However, the molecular mechanism of bromelain on anti-inflammatory response is not clear. Therefore, this study was aimed to dissect this anti-inflammatory mechanism. Peripheral blood mononuclear cells (PBMC) from healthy donors and THP-1 cells were used for this study. Cells were cultured with lipopolysaccharides (LPS) (1μg/ml) and or different concentration of bromelain (1-100μg/ml) for 24hr, and found that bromelain was not toxic to cell by MTT assay. The cultured supernatants were collected and assayed for TNF-α, IL-1β, and IL-6 by ELISA methods, the cytokine gene expression from the stimulated cells was also analyzed by RT-PCR. The results showed that the bromelain significantly inhibited pro-inflammatory factors released from the LPS-stimulated PBMC and THP-1 cells. Since this effect could be due to the enzymatic activity of bromelain, we then test this possibility and found that bromelain could digest the recombinant TNF-α, and IL-1β protein structure by its enzymatic activity. Since PGE2 is an important inflammatory mediator, we also found that bromelain significantly reduced PGE2 and COX-2 gene expression from THP-1 cells. Because these factors were induced by MAP kinase signaling pathway, we found that bromelain significantly inhibited MAPK (p38, ERK1/2, and JNK1/2) phosphorylation after 30 sec treatment with LPS. Moreover, bromelain reduced the nuclear-factor kappa B (NF-κB) activation from the LPS-activated cells. Finally we found bromelain could slightly but significantly inhibited ERK-2 and JNK1/2 phosphorylation without its enzymatic activity. Taken together, we concluded that bromelain inhibited inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, might be through the inhibition of the MAPK and NF-κB cascades and the enzymatic activity of bromelain was an important factor to inhibit inflammatory reaction.
目 錄
頁 次
目錄 I
圖目錄 VI
表目錄 VIII
中英及縮寫目對照表 IX
中文摘要 XII
英文摘要 XIII





頁次
第一章 前言 1
一 、 發炎反應之概述 1
(一) 急性發炎反應 1
(二) 慢性發炎反應 2
二 、 發炎反應的調控 5
(一) MAPKs (mitogen-activated protein kinase)路徑 5
(二) 環狀氧化酶 (cyclooxygenase) 8
(三) NF-kB 路徑 11
三 、 鳳梨酵素之簡介 14
四 、 鳳梨酵素之藥理作用 15
(一) 抗血小板凝集 15
(二) 血纖維蛋白溶解作用 15
(三) 改善心血管及循環系統 15
(四) 抗發炎作用 16
(五) 調節細胞激素及免疫 16
(六) 抗腫瘤作用 17
(七) 增進傷口癒合 17
五 、 研究目的 18
第二章 材料與方法 19
一、常用藥品與試劑配製 19
(一) 化學藥品 19
(二) 試劑配製 19
二、人類周邊血液單核細胞之製備 21
三、細胞培養及分化 22
(一) 細胞培養液的配製 22
(二) 完全培養液 22
(三) 細胞株的培養 21
(四) 巨噬細胞分化 23
四、淋巴球及THP-1細胞存活率之測定 23
五、免疫酵素法測定細胞激素TNF-α、IL-1β與IL-6之濃度 25
六、反轉錄聚合酶鏈鎖反應半定量細胞激素mRNA之表現 25
(一) RNA濃度之測定 26
七、反轉錄聚合酶鏈鎖反應 26
(一) 反轉錄聚合酶反應 26
(二) 引子之製備 27
(三) 聚合酶鏈鎖反應 27
八、細胞內蛋白質萃取及西方點墨法 27
(一) 蛋白質的萃取 27
(二) 聚丙烯醯胺膠體電泳法 28
(三) 西方轉漬法 28
九、PGE2測定 29
十、TXB2測定 29
十一、NF-κB活性測試 30
十二、鳳梨酵素酵素活性分析 30
十三、統計分析 31
第三章 結果 33
一 、 不同濃度之鳳梨酵素及LPS對人類周邊血液單核細胞(PBMC)及THP-1細胞存活率之影響 33
二 、 由ELISA方式測定不同濃度之鳳梨酵素對經由LPS所刺激之人類周邊血液單核細胞及THP-1細胞細胞激素分泌之影響 33
三 、 利用反轉錄聚合酶連鎖反應測定不同濃度之鳳梨酵素對經由LPS所刺激之THP-1細胞之TNF-α及IL-1β mRNA表現之影響 34
四 、 利用考馬式亮藍(coomassie blue)染色法測定不同濃度之鳳梨酵素對TNF-α及IL-1β之影響 34
五 、 用ELISA測定不同濃度之鳳梨酵素對由LPS所刺激之THP-1細胞之PGE2及TXA2分泌之影響 35
六 、 用反轉錄聚合酶連鎖反應測定不同濃度之鳳梨酵素對經由LPS所刺激之THP-1細胞之COX-1及COX-2表現之影響 35
七 、 利用西方點墨法檢視不同濃度之鳳梨酵素對經LPS所刺激之THP-1細胞 MAPK(mitogen-activated protein kinase)路徑之影響 36
八 、 用ELISA方式測定不同濃度之鳳梨酵素對經由LPS所刺激之THP-1細胞之NF-κB活化之影響 36
九 、 利用西方點墨法檢視失去酵素活性之不同濃度之鳳梨酵素對經LPS所刺激之THP-1細胞 MAPK路徑之影響 37
第四章 討論 51
一 、 鳳梨酵素與LPS對細胞存活率之影響 51
二 、 鳳梨酵素對經LPS刺激分泌之發炎細胞激素之影響 51
三 、 鳳梨酵素對PGE2與TXB2分泌及其基因之影響 53
四 、 鳳梨酵素對經LPS所誘發之MAPK路徑之關係 54
五 、 鳳梨酵素對經LPS所活化之NF-κB的影響 54
六 、 鳳梨酵素之酵素活性對其抑制經內毒素所引起之發炎反應之影響 55
第五章 結論 57
第六章 參考文獻 58












圖 目 錄

頁 次
Figure 1-1 Overview of the cells and mediators involved in local acute inflammatory response. 3
Figure 1-2 Overview of the organs and mediators involved in a systemic acute-phase response. 4
Figure 1-3 Redundant and pleiotropic effects of IL-1, TNF-α, and IL-6. 4
Figure 1-4 LPS stimulation of monocytes activates signaling pathways and transcription factors. 7
Figure 1-5 COX-1 and COX-2 are enzymes for PG biosynthesis. 9
Figure 1-6 Schematic model of the pathways and transcription factors involved in induction of the COX-2 promoter by LPS in macrophage. 10
Figure 1-7 Overview of the NF-κB and I-κB homology sequences. 12
Figure 1-8 A schematic representation of signaling cascades for LPS, IL and TNF-α stimulation and activation of NF-κB (p50/65). 13
Figure 3-1 Effect of LPS (1 μg/ml) and bromelain (1-100 μg/ml) on cell viability of human PBMC and THP-1 cells. 38
Figure 3-2 Effect of bromelain (1-100 μg/ml) on cytokines TNF-α, IL-1β, and IL-6 of human PBMC induced by LPS (1μg/ml). 39
Figure 3-3 Effect of bromelain (1-100 μg/ml) on cytokine TNF-α, and IL-1β of THP-1 cells induced by LPS (1 μg/ml). 40
Figure 3-4 Effect of bromelain (1-100 μg/ml) on TNF-α and IL-1β mRNA expression of THP-1 cells induced by LPS (1μg/ml) 41

Figure 3-5 Recombinant protein of TNF-α and IL-1β were treated with bromelain (1-100 μg/ml) for a certain period of time (0.5-16 min). TNF-α and IL-1β were digested by the enzymatic activity of bromelain. 42
Figure 3-6 Effect of bromelain (1-100 μg/ml) on PGE2 expression of THP-1 cells induced by LPS (1 μg/ml) 43
Figure 3-7 Effect of bromelain (1-100 μg/ml) on (TXB2) expression of THP-1 cells induced by LPS (1 μg/ml) 44
Figure 3-8 Effect of bromelain (1-100 μg/ml) on COX-1 and COX-2 mRNA expression of THP-1 cells induced by LPS (1μg/ml) 45
Figure 3-9 Effect of bromelain (70 μg/ml) on p38, ERK1/2, and JNK1/2 phosphorylation of THP-1 cells induced by LPS (1 μg/ml) for a certain period of time. 46-47
Figure 3-10 Effect of bromelian (1-100 μg/ml) on p38, ERK1/2, and JNK1/2 phosphorylation of THP-1 cells induced by LPS (1 μg/ml) 48
Figure 3-11 Effect of bromelain (70 μg/ml) on NF-κB activation of THP-1 cells induced by LPS (1 μg/ml) 49
Figure 3-12 Effect of non-enzymatic activity bromelian (10-100 μg/ml) on p38, ERK1/2, and JNK1/2 phosphorylation of THP-1 cells induced by LPS (1 μg/ml) 50












表 目 錄

頁 次
Table 2-1 The sequence of oligonucleotide primers and the condition of PCR. 32



























中 英 對 照 表
英文縮寫目 英文全文 中文翻譯
A.A. arachidonic acid 花生四烯酸
COX cyclooxygenase 環狀氧化酶
FBS Fetal Bovine Serum 胎牛血清
IFN-γ Interferon-γ 干擾素-γ
IL-1β Interleukin-1 β 介白質1-β
IL-6 Interleukin-6 介白質-6
iNOS induced NO-synthase 誘發性NO合成酶
LPS Lipololysaccharide 內毒素
LTB4 leukotriene B4 白三烯素 B4
PBMC Peripheral blood mononuclear cells 人類周邊血液單核細胞
PGE prostaglandin 前列腺素
PLA2 phospholipase A2 磷酸酯酶 A2
TNF-α Tumor necrosis factor-α 腫瘤壞死因子-α
TXA thromboxane 凝血酶
VCAM-1 Vascular adhesion molecular 1 血管附著因子-1
VEGF vascular endothelial cells growth factor 血管內皮細胞生長因子


ATF-2 Activation transcription factor 2
Bcl-3 B-cells leukemia-3
C/EBPβ CCAAT enhancer-binding protein β
CHOP C/EBP homologous protein
CRE/E-box cAMP responsive element overlapping a non-canonical E-box
DLK Localization of the mixed-lineage kinase
Elk-1 ets related protein-1
ERK Extra-cellular signal-regulated kinase
GCK germinal center kinase
hPAK1 human p21-activated protein kinase-1
ICAM-1 Inter-cellular adhesion molecular 1
I-κB Inhibitory-kappa B
JNK c-jun N-terminal kinase
MAPK Mitogen-activated protein kinase
MEF2C myocyte-enhancer factor 2C
MEKK1/4 MAPK kinase kinase-1/4
MK2 Map kinases activated kinases-2
MKK3 mitogen-activated protein kinase kinase 3
MKK4 mitogen-activated protein kinase kinase 4
MKK6 mitogen-activated protein kinase kinase 6
MMP-9 matrix metalloprotenase-9
MNK1/2 Map kinases-interacting kinases 1 and 2
mPAK3 mouse p21-activated protein kinase-3
MSK1 mitogen and stress activated protein kinase-1
MUK MAPK-upstream protein kinase
NF-κB Nuclear factor-kappa B
NLS Nuclear-localization sequences
PRAK p38-regulated and -activated kinase
RHD Rel homology domain
Sap1a stress-activated protein-1a
SAPK stress-activation protein kinase
SRE serum response element
SRF serum response factor
ZPK zipper protein kinase
第 六 章 參 考 文 獻
Angus Thomson,The cytokine handbook 2th, 1994。 Academic Press,New York。
Kuby,Immunology 4th, 1998 。 W.H. FREEMAN AND COMPANY,New York。
Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E. Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. J Immunol. 2004 Feb 15;172(4):2522-9.
Baggiolini M., Chemokines and leukocyte traffic. Nature. 1998; 392: 565
Bagrodia S, Taylor SJ, Creasy CL, Chernoff J, Cerione RA. Identification of a mouse p21Cdc42/Rac activated kinase. J Biol Chem. 1995 Sep 29; 270 (39):22731-7.
Barbara Gorgoni, Matilde Caivano, Carmen Arizmendi, and Valeria Poli. The transcription factor C/EBPβ is essential for inducible expression of the COX-2 gene in macrophages but not in fibroblasts. J Biol Chem. 2001, 276: 40769-40777
Baumann H., and Gauldie J. The acute response. Immunol Today. 1994; 15: 74
Biswas SK, Sodhi A. In vitro activation of murine peritoneal macrophages by monocyte chemoattractant protein-1: upregulation of CD11b, production of proinflammatory cytokines, and the signal transduction pathway. J Interferon Cytokine Res. 2002 May;22 (5):527-38.

Blonstein JL. The use of inverted question markbuccal varidase' in boxing injuries. Practitioner. 1960 Jul; 185:78-9.
Brown JL, Stowers L, Baer M, Trejo J, Coughlin S, Chant J. Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Curr Biol. 1996 May 1; 6(5):598-605.
Burns K., Clatworthy J., Martin L., Martinon F., Plumpton C., Maschera B., Lewis A., Ray K., Tschopp J., Volpe F. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat. Cell. Biol. 2000 2: 346-351
Caballero AE. Endothelial dysfunction, inflammation, and insulin resistance: a focus on subjects at risk for type 2 diabetes. Curr Diab Rep. 2004 Aug;4(4):237-46.
Caivano M, Cohen P. Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1 beta in RAW264 macrophages. J Immunol. 2000 Mar 15;164 (6):3018-25.
Callejas NA, Casado M, Diaz-Guerra MJ, Bosca L, Martin-Sanz P. Expression of cyclooxygenase-2 promotes the release of matrix metalloproteinase-2 and -9 in fetal rat hepatocytes. Hepatology. 2001 Apr; 33(4):860-7.
Campbell J, Ciesielski CJ, Hunt AE, Horwood NJ, Beech JT, Hayes LA, Denys A, Feldmann M, Brennan FM, Foxwell BM. A novel mechanism for TNF-alpha regulation by p38 MAPK: involvement of NF-kappa B with implications for therapy in rheumatoid arthritis. J Immunol. 2004 Dec 1;173(11):6928-37.
Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA, March CJ, Kronheim SR, Druck T, Cannizzaro LA, et al. Molecular cloning of the interleukin-1 beta converting enzyme. Science. 1992 Apr 3; 256(5053):97-100.
Chen Ching-Chow, Yi-Tao Sun, Jun-Jie Chen, and Kuo-Tung Chiu. TNF-α-induced cycloxygenase-2 expression in human lung epithelail cels: Involvement of the phospholipase C-γ2, protein kinase C-α, tyrosine kinase, NF-κB-inducing kinase, and I-κB kinase 1/2 pathway. J Immunol., 2000, 165: 2719-2728
Chen F, Castranova V, Shi X, and Demer L.M. New insights into the role of nuclear factor-kappa B, a ubiquitous transcription factor in the initiation of disease. Clin. Chem, 1999, 45:7-17
Chen KD, Chen LY, Huang HL, Lieu CH, Chang YN, Chang MD, Lai YK. Involvement of p38 mitogen-activated protein kinase signaling pathway in the rapid induction of the 78-kDa glucose-regulated protein in 9L rat brain tumor cells. : J Biol Chem. 1998 Jan 9; 273(2):749-55
Chen ZT, Li SL, Cai EQ, Wu WL, Jin JS, Zhu B. LPS induces pulmonary intravascular macrophages producing inflammatory mediators via activating NF-kappaB J Cell Biochem. 2003 Aug 15;89(6):1206-14.
Co DO, Hogan LH, Il-Kim S, Sandor M. T cell contributions to the different phases of granuloma formation. Immunol Lett. 2004 Mar 29;92(1-2):135-42.
Dai Y, Zhang X, Peng Y, Wang Z. The expression of cyclooxygenase-2, VEGF and PGs in CIN and cervical carcinoma. Gynecol Oncol. 2005 Apr;97(1):96-103.

DANIEL L. SIMMONS, REGINA M. BOTTING, AND TIMOTHY HLA Cyclooxygenase Isozymes: The Biology of Prostaglandin Synthesis and Inhibition. Pharmacol Rev 2004, 56:387–437,
Deak M, Clifton AD, Lucocq LM, Alessi DR. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 1998 Aug 3; 17(15):4426-41.
Dean JL, Brook M, Clark AR, Saklatvala J. p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. J Biol Chem. 1999 Jan 1;274(1):264-9.
De-Giuli M, Pirotta F. Bromelain: interaction with some protease inhibitors and rabbit specific antiserum. Drugs Exp Clin Res 1978; 4:21-23
Derijard B, Raingeaud J, Barrett T, Wu IH, Han J, Ulevitch RJ, Davis RJ. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science. 1995 Feb 3; 267(5198):682-5
Desser L, Rehberger A, Paukovits W. Proteolytic enzymes and amylase induce cytokine production in human peripheral blood mononuclear cells in vitro. Cancer Biother. 1994; 9(3):253-63.
Desser L, Rehberger A. Induction of tumor necrosis factor in human peripheral-blood mononuclear cells by proteolytic enzymes. Oncology. 1990; 47(6):475-7.
Dianzani U., and Malavasi F. Lymphocyte adhension to endothelium. Crit. Rev. Immunol. 1996; 15: 167
Dreskin SC, Thomas GW, Dale SN, Heasley LE. Isoforms of Jun kinase are differentially expressed and activated in human monocyte/macrophage (THP-1) cells. J Immunol. 2001 May 1;166 (9):5646-53.
Durando MM, Meier KE, Cook JA. Endotoxin activation of mitogen-activated protein kinase in THP-1 cells; diminished activation following endotoxin desensitization. J Leukoc Biol. 1998 Aug; 64(2):259-64.
Fosslien E. Molecular pathology of cyclooxygenase-2 in neoplasia. Ann Clin Lab Sci. 2000 Jan; 30(1):3-21.
Fukunaga R, Hunter T. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 1997 Apr 15; 16(8):1921-33.
Garbin F., Harrach T., Eckert K., Maurer H. R. Bromelain protease F9 augments human lymphocyte-mediated growth inhibition of various tumor cells in vitro. Int. J. Oncol. 1994; 5: 197-203
Garg A, Aggarwal BB. Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia. 2002 Jun; 16(6):1053-68.
Gee K, Lim W, Ma W, Nandan D, Diaz-Mitoma F, Kozlowski M, Kumar A. Differential regulation of CD44 expression by lipopolysaccharide (LPS) and TNF-alpha in human monocytic cells: distinct involvement of c-Jun N-terminal kinase in LPS-induced CD44 expression. : J Immunol. 2002 Nov 15;169 (10):5660-72.
Geppert TD, Whitehurst CE, Thompson P, Beutler B. Lipopolysaccharide signals activation of tumor necrosis factor biosynthesis through the ras/raf-1/MEK/MAPK pathway. Mol Med. 1994 Nov; 1(1):93-103.
Gerard G. Anticancer treatment and bromelains. Agressologie. 1972; 13(4):261-74.
Ghosh S, May MJ, Kopp EB NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998; 16:225-60.
Giacca S. Clinical experiences on the action of bromelain in peripheral venous diseases and in chronic bronchitic states. Minerva Med. 1965 Apr 18; 56:SUPPL:1-4.
Grabowska E., Eckert K., Fichtner I., Schulze-Forser K., Maurer H. R. Bromelain protease suppress growth, invasion and lung metastasis of B16F10 mouse melanoma cells. Int. J. Oncol. 1997; 11:243-248
Gregory S. Kelly, N.D. Bromelain: A literature review and discussion of its theraputic applications. Alt Med Rev 1996; 1: 243-259
Hambleton J, Weinstein SL, Lem L, DeFranco AL. Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc Natl Acad Sci U S A. 1996 Apr 2; 93(7):2774-8.
Han J, Lee JD, Bibbs L, Ulevitch RJ A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 1994 Aug 5; 265(5173):808-11.
Han J, Lee JD, Jiang Y, Li Z, Feng L, Ulevitch RJ. Characterization of the structure and function of a novel MAP kinase kinase (MKK6). J Biol Chem. 1996 Feb 9; 271(6):2886-91

Harrach T, Eckert K, Schulze-Forster K, Nuck R, Grunow D, Maurer HR. Isolation and partial characterization of basic proteinases from stem bromelain. J Protein Chem. 1995 Jan; 14(1):41-52.
Heinicke RM, van der Wal L, Yokoyama M. Effect of bromelain (Ananase) on human platelet aggregation. Experientia. 1972 Jul 15; 28(7):844-5.
Hirai S, Izawa M, Osada S, Spyrou G, Ohno S. Activation of the JNK pathway by distantly related protein kinases, MEKK and MUK. Oncogene. 1996 Feb 1; 12(3):641-50.
Hirai S, Noda K, Moriguchi T, Nishida E, Yamashita A, Deyama T, Fukuyama K, Ohno S. Differential activation of two JNK activators, MKK7 and SEK1, by MKN28-derived nonreceptor serine/threonine kinase/mixed lineage kinase 2. J Biol Chem. 1998 Mar 27; 273(13):7406-12.
Hogg N., and Berlin C. Structure and function of adhesion receptors in leukocyte trafficking. Immunol Taday. 1995; 16: 327
Hoozemans JJ, Veerhuis R, Rozemuller AJ, Arendt T, Eikelenboom P. Neuronal COX-2 expression and phosphorylation of pRb precede p38 MAPK activation and neurofibrillary changes in AD temporal cortex. Neurobiol Dis. 2004 Apr; 15(3):492-9
Huang Wei-Chien, Jun-Jie Chen, Hiroyasu Inoue, and Ching-Chow Chen. Tyrosine phosphorylation of I-κB kinase α/β by protein kinase C-dependent c-Src activation is involved in TNF-α induced cyclooxygenase-2 expression. J Immunol, 2003, 170: 4767-4775

Inoue K, Motonaga A, Dainaka J, Nishimura T, Hashii H, Yamate K, Ueda F, Kimura K. Effect of etodolac on prostaglandin E2 biosynthesis, active oxygen generation and bradykinin formation. Prostaglandins Leukot Essent Fatty Acids. 1994 Dec; 51:457-62.
James M. J., Penglis P. S., Caughey G. E., Demasi M., and Cleland L. G. Eicosanoid production by human monocytes: does COX-2 contribute to a self-limiting inflammatory response? Inflammation Research. 2001; 50: 249-253
Janknecht R, Hunter T. Convergence of MAP kinase pathways on the ternary complex factor Sap-1a. EMBO J. 1997 Apr 1;1 6(7):1620-7.
Jeung A. Encyclopedeia of common natural ingredients used in food, drugs, and cosmetics. New York, NY: John Wiley&Sons;1980:74-76
Juan R. Mestre, David E. Rivadeneira, Peter J. Mackerll, Michael Duff, Philip P. Stapleton, Vivain Mack-Strong, Sirsh Maddali, Gordon P. Smyth, Tadashi Tanabe, John M. Daly. Overlapping CRE and E-box promoter elements can independently regulate COX-2 gene transcription in macrophage. FEBS letter, 2001, 496: 147-151
Jue DM, Sherry B, Luedke C, Manogue KR, Cerami A. Processing of newly synthesized cachectin/tumor necrosis factor in endotoxin-stimulated macrophages. Biochemistry. 1990 Sep 11; 29(36):8371-7.
Karim S, Habib A, Levy-Toledano S, Maclouf J. Cyclooxygenase-1 and -2 of endothelial cells utilize exogenous or endogenous arachidonic acid for transcellular production of thromboxane. J Biol Chem. 1996 May 17; 271(20):12042-8.
Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol. 1997 Apr;9(2):240-6.
Karin M. Mitogen-activated protein kinase cascades as regulators of stress responses. Ann N Y Acad Sci. 1998 Jun 30; 851:139-46.
Khatami M. Developmental phases of inflammation-induced massive lymphoid hyperplasia and extensive changes in epithelium in an experimental model of allergy: implications for a direct link between inflammation and carcinogenesis. Am J Ther. 2005 Mar-Apr;12(2):117-26
Kim SH, Johnson VJ, Shin TY, Sharma RP. Selenium attenuates lipopolysaccharide-induced oxidative stress responses through modulation of p38 MAPK and NF-kappaB signaling pathways. Exp Biol Med. 2004 Feb;229 (2):203-13.
Kleef R., Delohery T. M., Bovebjerg D. H., Selective modulation of cell adhension moleculars on lymphocytes by bromelain proteases. Pathobiology 1996; 64: 339-346
Konturek PC, Kania J, Konturek JW, Nikiforuk A, Konturek SJ, Hahn EG. H. pylori infection, atrophic gastritis, cytokines, gastrin, COX-2, PPAR gamma and impaired apoptosis in gastric carcinogenesis. Med Sci Monit. 2003 Jul; 9(7):SR53-66.
Kriegler M, Perez C, DeFay K, Albert I, Lu SD. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell. 1988 Apr 8; 53(1):45-53.

Lai Wan-Ching, Min Zhou, Uma Shankavaram, Gang Peng, and Larry M. Wahl. Differential regulation of lipopolysaccharide-induced monocyte matrix metalloproteinase(MMP)-1 and MMP-9 by p38 and extracelular signal-regulated kinase 1/2 mitogen-activated protein kinases. J Immunol., 2003, 170: 6244-6249
Lenarcic B., Ritonja A., Turk B., Dolenc I., and Turk V. Characterization and structure of pineapple stem inhibitor of cysteine proteinases. Biol. Chem. 1992; 373: 459-464
Lin Derrick T., Kotha Subbaramaiah, Jatin P. Shan, Andrew J DannenBerg, Jay O. Boyle. Cyclooxygenase-2 : A novel molecular target for the prevention and treatment of the head and neck cancer. Head Neck 24: 792-799, 2002.
Liu W, Reinmuth N, Stoeltzing O, Parikh AA, Tellez C, Williams S, Jung YD, Fan F, Takeda A, Akagi M, Bar-Eli M, Gallick GE, Ellis LM. Cyclooxygenase-2 is up-regulated by interleukin-1 beta in human colorectal cancer cells via multiple signaling pathways. Cancer Res. 2003 Jul 1;63 (13):3632-6.
Lotz-Winter H. On the pharmacology of bromelain: an update with special regard to animal studies on dose-dependent effects. Planta Med. 1990 Jun; 56(3):249-53
Malkinson AM. Role of inflammation in mouse lung tumorigenesis: a review. Exp Lung Res. 2005 Jan-Feb; 31(1):57-82.
Marakami M. Y., Nakatani G., Atsumi K., Inoue and I. Kido. Regulatory functions of phospholipase A2. Crit. Rev. Immunol. 1997; 17: 225

Marie C, Roman-Roman S, Rawadi G. Involvement of mitogen-activated protein kinase pathways in interleukin-8 production by human monocytes and polymorphonuclear cells stimulated with lipopolysaccharide or Mycoplasma fermentans membrane lipoproteins. Infect Immun. 1999 Feb; 67(2):688-93.
Matilde Caivano, Barbara Gorgoni, Philip Cohen, and Valeria Poli. The induction of cyclooxygenase-2 mRNA in macrophages is biphasic and requires both CCAAT enhancer-binding protein β(C/EBPβ) and C/EBPδ transcription factors. J Biol Chem. 2001, 276: 48693-48701
Maurer H. R., Hozuma M., Honma Y., Okabe-Kado J. Bromelain induces the differentiation of leukemia cells in vitro: an explanation for its cytostaic effects? Planta Medical 1988; 54:377-381
Mausumee Guha, Nigel Mackman. LPS induction of gene expression in human monocytes. Cellular Signalling 13 (2001) 85± 94
McEvoy AN, Bresnihan B, FitzGerald O, Murphy EP. Cyclooxygenase 2-derived prostaglandin E2 production by corticotropin-releasing hormone contributes to the activated cAMP response element binding protein content in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2004 Apr; 50(4):1132-45
Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA Jr. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell. 1998 Aug;2(2):253-8.
Mestre JR, Mackrell PJ, Rivadeneira DE, Stapleton PP, Tanabe T, Daly JM. Redundancy in the signaling pathways and promoter elements regulating  cyclooxygenase-2 gene expression in endotoxin treated macrophage monocytic cells. J Biol Chem. 2001 Feb 9;276 (6):3977-82. Epub 2000 Nov 22
Minden A, Karin M. Regulation and function of the JNK subgroup of MAP kinases. Biochim Biophys Acta. 1997 Oct 24; 1333(2):F85-104.
Morita AH, Uchida DA, Taussig SJ, Chou SC, Hokama Y. Chromatographic fractionation and characterization of the active platelet aggregation inhibitory factor from bromelain. Arch Int Pharmacodyn Ther. 1979 Jun; 239(2):340-50.
Mukundan L, Bishop GA, Head KZ, Zhang L, Wahl LM, Suttles J. TNF receptor-associated factor 6 is an essential mediator of CD40-activated proinflammatory pathways in monocytes and macrophages. J Immunol. 2005 Jan 15;174(2):1081-90.
Munzig E, Eckert K, Harrach T, Graf H, Maurer HR. Bromelain protease F9 reduces the CD44 mediated adhesion of human peripheral blood lymphocytes to human umbilical vein endothelial cells. FEBS Lett. 1994 Sep 5; 351(2):215-8.
Murakami Y, Shoji M, Hirata A, Tanaka S, Yokoe I, Fujisawa S. Dehydrodiisoeugenol, an isoeugenol dimer, inhibits lipopolysaccharide stimulated nuclear factor kappa B activation and cyclooxygenase-2 expression in macrophages. Arch Biochem Biophys. 2005 Feb 15;434(2):326-32.
Nakao S, Ogtata Y, Shimizu E, Yamazaki M, Furuyama S, Sugiya H. Tumor necrosis factor alpha (TNF-alpha)-induced prostaglandin E2 release is mediated by the activation of cyclooxygenase-2 (COX-2) transcription via NFkappaB in human gingival fibroblasts. Mol Cell Biochem. 2002 Sep; 238(1-2):11-8.
Napper, A. D., S. P. Bennett, M. Borowski, M/ B. Holdridge, M. J. Leonard, E. E. Rogers, Y. Duan, R. A. Laursen, B. Reinhold, and S. L. Shames. Pruification and characterization of mutiple forms of the pineapple-stem-derived cystein proteinases ananain and comosain. Biochem. J. 1994 301: 727-734
New L, Jiang Y, Zhao M, Liu K, Zhu W, Flood LJ, Kato Y, Parry GC, Han J. PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J. 1998 Jun 15;17(12):3372-84.
Nieper HA. A program for the treatment of cancer. Krebs 1974;6:124-127
Nieper HA. Effect of bromelain on coronary heart disease and angina pectoris. Acta Med Empirica 1978; 5:274-278
Ojaniemi M, Glumoff V, Harju K, Liljeroos M, Vuori K, Hallman M. Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur J Immunol. 2003 Mar;33(3):597-605.
Paul Bremner and Michael Heinrich. Natural products as targeted modulators of the nuclear factor-kB pathway. J. Pharm. Pharmacol.2002, 54: 453-472
Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol. 1996 Mar; 16(3):1247-55
Rashad S, Recell P, Hemingway A, Low F, Rainsford K, Walker F. Effect of non-steroidal anti-inflammatory drugs on the course of osteoarthritis. Lancet 1989; ii: 519-22
Rowan A. D. and Buttle D. J. Pineapple cysteine endopeptidase. Meth. Enzymol. 1994; 244: 555-568
Rowan AD, Buttle DJ, Barrett AJ. The cysteine proteinases of the pineapple plant. Biochem J. 1990 Mar 15; 266(3):869-75.
Schafer AI, Adelman B. Plasmin inhibition of platelet function and of arachidonic acid metabolism. J Clin Invest. 1985 Feb; 75(2):456-61.
Scherle PA, Jones EA, Favata MF, Daulerio AJ, Covington MB, Nurnberg SA, Magolda RL, Trzaskos JM. Inhibition of MAP kinase kinase prevents cytokine and prostaglandin E2 production in lipopolysaccharide-stimulated monocytes. J Immunol. 1998 Nov 15;161(10):5681-6.
Schottelius, A.J., Mayo, M.W., Sartor, R.B., and Baldwin, A.S. Interleukin-10 signaling blocks inhibitor of kappa B kinase activity and nuclear factor kappa B DNA binding. J.Biol.Chem. 1999 274 : 31868-31874.
Seligman B Bromelain: an anti-inflammatory agent. Angiology. 1962 Nov;13:508-10.
Shapira L, Takashiba S, Champagne C, Amar S, Van Dyke TE. Involvement of protein kinase C and protein tyrosine kinase in lipopolysaccharide-induced TNF-alpha and IL-1 beta production by human monocytes. J Immunol. 1994 Aug 15; 153(4):1818-24
Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev. 2004 Sep; 56(3):387-437.
Steel DM., and Whitehead AS. The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immumo Today. 1994; 15: 81
Stokoe D, Campbell DG, Nakielny S, Hidaka H, Leevers SJ, Marshall C, Cohen P. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase. EMBO J. 1992 Nov; 11(11):3985-94.
Strassheim D, Asehnoune K, Park JS, Kim JY, He Q, Richter D, Kuhn K, Mitra S, Abraham E. Phosphoinositide 3-kinase and Akt occupy central roles in inflammatory responses of Toll-like receptor 2-stimulated neutrophils. J Immunol. 2004 May 1;172(9):5727-33.
Sun L.K., Wahl P., Bilic G., Wuthrich R. P. CD44-mediated cyclooxygenase-2 expression and thromboxane A2 production in RAW264.7 macrophages. Inflamm Res. 2001; 50: 496-499.
Swantek JL, Cobb MH, Geppert TD. Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK. Mol Cell Biol. 1997 Nov; 17(11):6274-82.
Takahide Kohro, Toshiya Tanaka, Takeshi Murakami, Yoichiro Wada, Hiroyuki Aburatanti, Takao Hamakubo, Tatsuiko Kodama. A comparison of differences in the gene expression profiles of phorbol 12-myristate 13-acetate differentiated THP-1 cells and human monocyte-derived macrophage. J. Atheroscler Thromb. 2004; 11: 88-97
Tassman GC, Zafran JN, Zayon GM. A double-blind crossover study of a plant proteolytic enzyme in oral surgery. J Dent Med 1965;56:104
Tassman GC, Zafran JN, Zayon GM. Evaluation of a plant proteolytic enzyme for the control of inflammation and pain. J Dent Med 1964;19:73-77
Taussig SJ, Batkin S. Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application. An update. J Ethnopharmacol. 1988 Feb-Mar; 22(2):191-203.
Taussig SJ, Nieper HA. Bromelain: its use in prevention and treatment of cardiovascular disease, present status. J IAPM 1979, 6:139-151
Taussig SJ, Szekerczes J, Batkin S. Inhibition of tumour growth in vitro by bromelain, an extract of the pineapple plant (Ananas comosus). Planta Med. 1985 Dec;(6):538-9.
Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992 Apr 30; 356(6372):768-74.
Tracey L. Mynott, Andrew Ladhams, Pierre Scarmato, and Christian R. Engwerda. Bromelain, from pineapple stems, proteolytically blocks activation of extracellular regulated kinase-2 in T cells. J Immunol, 1999, 163: 2568-2575
Turini ME, DuBois RN. Cyclooxygenase-2: a therapeutic target. Annu Rev Med. 2002;53:35-57.
Uhlig G, Seifert J. The effect of proteolytic enzymes (traumanase) on posttraumatic edema. Fortschr Med. 1981 Apr 16; 99(15):554-6.
Vane J. R., Y. S. Bakhle, and R. M. Botting. Cyclooxygenase 1 and 2. Annu. Rev. Pharmacol. Toxicol. 1998; 38: 97
Vellini M, Desideri D, Milanese A, Omini C, Daffonchio L, Hernandez A, Brunelli G. Possible involvement of eicosanoids in the pharmacological action of bromelain. Drug Res. 1986; 36(1):110-2.
Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. : Genes Dev. 1995 Nov 15; 9(22):2723-35.
Viatour P, Merville MP, Bours V, Chariot A. Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci. 2005 Jan;30(1):43-52
Wang XZ, Ron D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science. 1996 May 31; 272(5266):1347-9
Watson DK, Robinson L, Hodge DR, Kola I, Papas TS, Seth A. FLI1 and EWS-FLI1 function as ternary complex factors and ELK1 and SAP1a function as ternary and quaternary complex factors on the Egr1 promoter serum response elements. Oncogene. 1997 Jan 16; 14(2):213-21.
White RR, Crawley FE, Vellini M, Rovati LA. Bioavailability of 125I bromelain after oral administration to rats. Biopharm Drug Dispos. 1988 Jul-Aug; 9(4):397-403.
Wong SH, Lord JM. Factors underlying chronic inflammation in rheumatoid arthritis. Arch Immunol Ther Exp (Warsz). 2004 Nov-Dec;52(6):379-88.
Wu MH, Wang CA, Lin CC, Chen LC, Chang WC, Tsai SJ. Distinct regulation of cyclooxygenase-2 by interleukin-1beta in normal and endometriotic stromal cells. J Clin Endocrinol Metab. 2005 Jan;90(1):286-95.

Wysk M, Yang DD, Lu HT, Flavell RA, Davis RJ. Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for tumor necrosis factor-induced cytokine expression. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3763-8.
Yamazaki S, Muta T, Takeshige K. A novel IkappaB protein, IkappaB-zeta, induced by proinflammatory stimuli, negatively regulates nuclear factor-kappaB in the nuclei. J Biol Chem. 2001 Jul 20; 276(29):27657-62.
Yonehara N, Shibutani T, Inoki R. Contribution of substance P to heat-induced edema in rat paw. J Pharmacol Exp Ther. 1987 Sep; 242(3):1071-6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top