|
1.Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling. Management Science, 34(3), 391-401. 2.Alcaide, D., Sicilia, J., & Vigo, D. (1997). Heuristic approaches for the minimum makespan open shop problem. Trabajos de Investigación Operativa, 5(2), 283-296. 3.Allahverdi, A, & Al-Anzi, F.S. (2006). A PSO and a tabu search heuristics for the assembly scheduling problem of the two-stage distributed database application. Computers and Operations Research, 33(4), 1056-1080. 4.Angeline, P.J. (1998). Using selection to improve particle swarm optimization. Proceedings of the IEEE International Conference on Evolutionary Computation, 84–89. 5.Bagchi, T.P. (1999). Multiobjective scheduling by genetic algorithms. Kluwer Academic Publishers. 6.Balas, E., & Vazacopoulos, A. (1998). Guided local search with shifting bottleneck for job shop scheduling. Management Science, 44(2), 262-275. 7.Bean, J. (1994). Genetic algorithms and random keys for sequencing and optimization. Operations Research Society of America (ORSA) Journal on Computing, 6, 154-160. 8.Beasley J.E. (1990). OR-Library: distributing test problems by electronic mail. Journal of the Operational Research Society, 14, 1069-1072. 9.Blum, C. (2005). Beam-ACO—hybridizing ant colony optimization with beam search: and application to open shop scheduling. Computers & Operations Research, 32, 1565-1591. 10.Brucker, P., Hurink, J., Jurisch, B., & Wöstmann, B. (1997). A branch & bound algorithm for the open-shop problem. Discrete Applied Mathematics, 76, 43-59. 11.Chu, P.C., & Beasley, J.E. (1998). A genetic algorithm for the multidimensional knapsack problem. Journal of Heuristic, 4, 63–86. 12.Colak, S., & Agarwal, A. (2005). Non-greedy heuristics and augmented neural networks for the open-shop scheduling problem. Naval Research Logistics, 52, 631-644. 13.Davis, L. (1985). Job shop scheduling with genetic algorithm. Proceedings of the first International Conference on Genetic Algorithms, 163-140. 14.Dorndorf, U., Pesch, E., & Phan-Huy, T. (2001). Solving the open-shop scheduling problem. Journal of scheduling, 4(3), 157-174. 15.Drexl, A. (1988). A simulated annealing approach to the multiconstraint zero-one knapsack problem. Computing, 40, 1–8. 16.Eberhart R., & Shi Y. (2001). Particle swarm optimization: developments, applications and resources. Proceedings of the 2001 IEEE Congress on Evolutionary Computation, 81-86. 17.Fisher, H., & Thompson, G.L. (1963). Industrial Scheduling. Englewood Cliffs, NJ: Prentice-Hall. 18.French, S. (1982). Sequencing and scheduling: an introduction to the mathematics of the job-shop. UK: Horwood. 19.Fréville, A. (2004). The multidimensional 0–1 knapsack problem: An overview. European Journal of Operational Research, 155(1), 1–21. 20.Fréville, A., & Hanafi, S. (2005). The multidimensional 0-1 knapsack problem — bounds and computational aspects. Annals of Operations Research, 139, 195–227. 21.Garey, M.R., Johnson, D.S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of Operations Research, 1, 117-129. 22.Gen, M., & Cheng, R. (1997). Genetic algorithms and engineering design. New York: Wiley. 23.Giffler, J., & Thompson, G.L. (1960). Algorithms for solving production scheduling problems. Operations Research, 8, 487-503. 24.Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers and Operations Research, 13, 533-549. 25.Glover, F. (1989). Tabu search: Part I. ORSA Journal on Computing, 1, 190-206. 26.Glover, F. (1990). Tabu search: Part II. ORSA Journal on Computing, 2, 4-32. 27.Glover, F., & Kochenberger G.A. (1996). Critical event tabu search for multidimensional knapsack problems, in I.H. Osman, and J.P. Kelly, (Eds.), Metaheuristics: The Theory and Applications, Kluwer Academic Publishers, Dordrecht, pp.407–427. 28.Goldberg, D.E. (2002). The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, Dordrecht. 29.Gonçalves, J.F., & Beirão, N.C., (1999). Um Algoritmo Genético Baseado em Chaves Aleatórias para Sequenciamento de Operações. Revista Associação Portuguesa de Desenvolvimento e Investigação Operacional 19, 123-137 (in Portuguese). 30.Gonçalves, J.F., Mendes, J.J. M., & Resende, M.G.C. (2005). A hybrid genetic algorithm for the job shop scheduling problem. European Journal of Operational Research, 167(1), 77-95. 31.Gonzalez, T., & Sahni, S. (1976). Open shop scheduling to minimize finish time. Journal of the ACM, 23(4), 665-679. 32.Guéret, C., & Prins, C. (1998). Classical and new heuristics for the open-shop problem: a computational evaluation, European Journal of Operational Research, 107(2), 306-314. 33.Guéret, C., & Prins, C. (1999). A new lower bound for the open-shop problem. Annals of Operations Research, 92, 165-183. 34.Hanafi, S., & Fréville, A. (1998). An efficient tabu search approach for the 0-1 multidimensional knapsack problem. European Journal of Operational Research, 106, 659–675. 35.Jain, A.S., Rangaswamy, B., & Meeran, S. (2000). New and “stronger” job-shop neighbourhoods: a focus on the method of Nowicki and Smutnicki (1996). Journal of Heuristics, 6, 457-480. 36.Jin, Y.X., Cheng, H.Z., Yan, J.Y., Zhang, L. (2007). New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electric Power Systems Research, 77(3-4), 227-233. 37.Kennedy, J., & Eberhart, R.C. (1995). Particle swarm optimization. Proceedings of the 1995 IEEE International Conference on Neural Networks, 4, 1942-1948. 38.Kennedy, J., & Eberhart, R.C. (1997). A discrete binary version of the particle swarm algorithm. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 5, 4104–4108. 39.Kobayashi, S., Ono, I., & Yamamura, M. (1995). An efficient genetic algorithm for job shop scheduling problems. Proceedings of the Sixth International Conference on Genetic Algorithms, 506-511. 40.Lawrence, S., (1984). Resource constrained project scheduling: An experimental investigation of heuristic scheduling techniques. Graduate School of Industrial Administration (GSIA), Carnegie Mellon University, Pittsburgh, PA. 41.Li, N., Liu, F., Sun, D., & Huang, C. (2004). Particle Swarm Optimization for Constrained Layout Optimization. Proceedings of Fifth World Congress on Intelligent Control and Automation (WCICA 2004), 3, 2214-2218. 42.Lian, Z., Gu, X., & Jiao, B. (2006). A similar particle swarm optimization algorithm for permutation flowshop scheduling to minimize makespan. Applied Mathematics and Computation,175(1), 773-785. 43.Liao, C.J., Tseng, C.T., & Pin, L. (2007). A discrete version of particle swarm optimization for flowshop scheduling problems. Computers and Operations Research, 34(10), 3099-3111. 44.Liaw, C-F. (1999a). Applying simulated annealing to the open shop scheduling problem. IIE Transactions, 31, 457-465. 45.Liaw, C-F. (1999b). A tabu search algorithm for the open shop scheduling problem. Computers & Operations Research, 26, 109-126. 46.Liaw, C-F (2000). A hybrid genetic algorithm for the open shop scheduling problem. European Journal of Operational Research, 124, 28-42. 47.Lourenço, H.R. (1995). Local optimization and the job-shop scheduling problem. European Journal of Operational Research, 83, 347-364. 48.Mattfeld, D.C. (1996). Evolutionary Search and the Job Shop: Investigations on Genetic Algorithms for Production Scheduling. Physica-Verlag, Heidelberg, Germany. 49.Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop problem. Management Science, 42(6), 797-813. 50.Osorio, M.A., Glover, F., & Hammer, P. (2002). Cutting and surrogate constraint analysis for improved multidimensional knapsack solutions. Annals of Operations Research, 117, 71–93. 51.Ow, P.S., & Morton, T.E. (1988). Filtered beam search in scheduling. International Journal of Production Research, 26, 297-307. 52.Pang, W., Wang, K.P., Zhou, C.G.., Dong, L.J., Liu, M., Zhang, H.Y., & Wang, J.Y. (2004). Modified particle swarm optimization based on space transformation for solving traveling salesman problem. Proceedings of 2004 International Conference on Machine Learning and Cybernetics, 4, 2342-2346. 53.Pezzella, F., & Merelli, E. (2000). A tabu search method guided by shifting bottleneck for the job shop scheduling problem. European Journal of Operational Research, 120(2), 297-310. 54.Pirkul, H. (1987). A heuristic solution procedure for the multiconstraint zero-one knapsack problem. Naval Research Logistics, 34, 161–172. 55.Prins, C. (2000). Competitive genetic algorithms for the open-shop scheduling problem. Mathematical Methods of Operations Research, 52, 389-411. 56.Rastegar, R., Meybodi, M.R., & Badie, K. (2004). A new discrete binary particle swarm optimization based on learning automata. Proceedings of the IEEE International Conference on Machine Learning and Applications, 456–465. 57.Salman, A., Ahmad, I., & Al-Madani, S. (2002). Particle swarm optimization for task assignment problem. Microprocessors and Microsystems, 26(8), 363-371. 58.Sha, D.Y., & C.-Y. Hsu. (2006). “A modified parameterized active schedule generation algorithm for the job shop scheduling problem,” Proceedings of the 36th International Conference on Computers and Industrial Engineering (ICCIE 2006), pp. 702-712, Taiwan, ROC. 59.Shi Y, & Eberhart R.C. (1998a). Parameter selection in particle swarm optimization. Proceedings of the 7th International Conference on Evolutionary Programming, 591-600. 60.Shi Y, & Eberhart R.C. (1998b). A modified particle swarm optimizer. Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, 69-73. 61.Stacey, A., Jancic, M., & Grundy, I. (2003). Particle swarm optimization with mutation. Proceedings of the 2003 IEEE Congress on Evolutionary Computation, 2, 1425-1430. 62.Sun, D., Batta, R., & Lin, L. (1995). Effective job shop scheduling through active chain manipulation. Computers & Operations Research, 22(2), 159-172. 63.Taillard, E.D. (1993), Benchmarks for basic scheduling problems, European Journal of Operational Research, 64, 278-285. 64.Tasgetiren, M.F., Liang, Y-C., Sevkli, M., & Gencyilmaz, G. (2007). A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing. European Journal of Operational Research, 177(3), 1930-1947. 65.Vasquez, M., & Hao, J.K. (2001). A hybrid approach for the 0-1 multidimensional knapsack problem. Proceedings of the 7th International Joint Conference on Artificial Intelligence, 1, 328–333. 66.Vasquez, M., & Vimont, Y. (2005). Improved results on the 0-1 multidimensional knapsack problem. European Journal of Operational Research, 165, 70–81. 67.Wang, K.P., Huang, L., Zhou, C.G., & Pang, W. (2003). Particle swarm optimization for traveling salesman problem. Proceedings of International Conference on Machine Learning and Cybernetics, 3, 1583-1585. 68.Wang, L., & Zheng, D. (2001). An effective hybrid optimization strategy for job-shop scheduling problems. Computers & Operations Research, 28, 585-596. 69.Wu, B., Zhao, Y., Ma Y., Dong, H., & Wang, W. (2004). Particle Swarm Optimization method for Vehicle Routing Problem. Proceedings of Fifth World Congress on Intelligent Control and Automation (WCICA 2004), 3, 2219 – 2221. 70.Xia, W., & Wu, Z. (2005). An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Computers & Industrial Engineering, 48(2), 409-425. 71.Yin, P.Y., Yu, S.S., Wang, P.P., & Wang, Y.T. (2007a). Multi-objective task allocation in distributed computing systems by hybrid particle swarm optimization. Applied Mathematics and Computation, 184(2), 407-420. 72.Yin, P.Y., Yu, S.S., Wang, P.P, & Wang, Y.T. (2007b). Task allocation for maximizing reliability of a distributed system using hybrid particle swarm optimization. The Journal of Systems & Software, 80(5), 724-735. 73.Zhang, H., Li, X., Li, H., & Huang, F. (2005). Particle swarm optimization-based schemes for resource-constrained project scheduling. Automation in Construction, 14, 393-404. 74.Zhang, H., Li, H., & Tam, C.M. (2006). Particle swarm optimization for resource-constrained project scheduling. International Journal of Project Management, 24(1), 83-92. 75.Zhi, X.H., Xing, X.L., Wang, Q.X., Zhang, L.H., Yang, X.W., Zhou, C.G., & Liang, Y.C. (2004). A discrete PSO method for generalized TSP problem. Proceedings of 2004 International Conference on Machine Learning and Cybernetics, 4, 2378-2383.
|