跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周秋楓
研究生(外文):Chiu-Fong Chou
論文名稱:陰陽極組對電解系統氧化葡萄糖酸鈉之研究
論文名稱(外文):Oxidation of Sodium Gluconate via Paired Electrolysis System
指導教授:周澤川
指導教授(外文):Tse-Chuan Chou
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:127
中文關鍵詞:組對電解氧化葡萄糖酸鈉阿拉伯糖
外文關鍵詞:sodium gluconatearabinosepaired electro-oxidation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一般的電化學系統裡,產物是在工作電極上產生,而輔助電極沒有利用到,為了改善這缺點,開發一種新的有機電合成系統,使得陽極及陰極都可以獲得相同的產物,這樣除了可以使能源有效利用外,還可以節省製程設備。右旋阿拉伯糖是五碳糖的一種,是一種維它命B2及維它命D原料的前驅物,它可以經由葡萄糖酸鈉氧化產生,因此本文針對陽極氧化、陰極氧化及陰陽極組對三種方式氧化葡萄糖酸鈉,希望可以開發一種新的高經濟效應的有機電合成製程。

在陽極氧化系統,使用分離式電解槽,針對使用Cl-/OCl-離子為氧化還原媒子之間接電解系統及無氧化還原媒子的系統進行研究。由實驗數據得知在陽極室裡之直接電解陽極氧化系統之電流效率為86﹪,使用Cl-/OCl-媒子之間接電解陽極氧化系統之電流效率為59﹪,可知葡萄糖酸鈉直接在電極表面氧化的系統效果較好。經理論及實驗數據比對分析後得知,葡萄糖酸鈉反應氧化為右旋阿拉伯醣之反應速率決定步驟為如下所示
R1s -->�� R2s + e- (1)
葡萄糖酸根離子在電極表面失去電子之反應式,而其陽極氧化葡萄糖酸鈉反應之電流速率方程式為
i=((0.89[NaC6H11O7])/(0.7357+[NaC6H11O7]))*exp(0.37Fn2/RT) (2)
其中F 為法拉弟常數,葡萄糖酸根離子形成葡萄糖酸根自由基之過電位。


在陰極氧化系統裡,使用分離式電解槽,針對使用Ce4+/Ce3+,Fe3+/Fe2+,V3+/V2+氧化還原媒子之間接電解系統作探討。氧氣在陰極表面還原為過氧化氫,過氧化氫分解為氫氧自由基,氫氧自由基再氧化葡萄糖酸鈉形成右旋阿拉伯醣。由實驗結果顯示,在陰極室裡,反應物濃度60 mM 葡萄糖酸鈉在25℃ 及1.32 電流密度下,使用 氧化還原媒子較 及 氧化媒子效果好,但是由於自由基反應造成副反應多,因此在陰極氧化生成右旋阿拉伯醣之電流效率不高,約19%。

在陰陽極組對電解系統裡,結合陰極及陽極氧化分別在分離式電解槽及非分離式電解槽進行研究。在非分離式電解槽裡使用Fe2+/Fe3+為氧化還原媒子進行氧化葡萄糖酸鈉產生右旋阿拉伯醣之探討,由實驗結果得知,在氧氣流量為200 ml/min , 0.2N 醋酸及醋酸鈉緩衝溶液,10mM Fe3+離子,25℃及電流密度0.94mA/cm2 操作條件下,陰陽極組對電解系統之總電流效率為75%。
在分離式電解槽裡,實驗結果顯示在陰陽極組對電解系統裡的陰極及陽極反應與單獨使用之陰極及陽極反應結果相同,所以在陰陽極組對電解系統裡,當電荷為68.22C時,可得最大的總電流效率127﹪,陽極最佳的電流效率為86﹪。在陰極室使用 為氧化還原媒子,最佳的電流效率約41﹪。陰陽極組對電解系統在非分離式反應器裡總電流效率為75﹪,分離式反應器之右旋阿拉伯醣生成總電流效率為127﹪,可知分離式電解槽有較佳之電流效率,比單獨陽極氧化或陰極氧化的電流效率高,且比單獨陽極氧化的電流效率高1.5倍,因此使用陰陽極組對電解系統應用於氧化葡萄糖酸鈉生成阿拉伯醣之研究為可行之系統,且可以增加電流效率,節省能源,為一種新穎的產生右旋阿拉伯醣製程。
In a general electrochemical system, the products are produced at working electrode, the counter electrode is not availability. To improve the disadvantage, the electro-organic synthesis process is upgraded when the same product is obtained on both anode and cathode electro-organic synthesis being invented. In this way, the power consumption and cost of equipment are reduced. D-arabinose is a monosacharides, which plays an important role in the synthesis of vitaminB2 and vitaminD. D-arabinose is prepared by degradation oxidation, in which the carbon chain length of sodium gluconate or its derivatives is reduced. Production of D-arabinose via anodic oxidation, cathodic oxidation and paired electro-oxidation were studied in this dissertation. The purpose of this study is to research and development of electro-organic synthesis process which will be less power consumption and high economy.

In anodic oxidative system, using Cl-/OCl- as redox medicator and direct electro-oxidation in divided cell are studied. Effect of operation condition on the reaction rate, reaction kinetics and rate determining step are systematically investigated. The experimental results show that direct electro-oxidation has better than indirect electro-oxidation. The current efficiency are 86% and 59% for direct and indirect electro-oxidation, respectively. The reaction mechanism of sodium gluconate anodic oxidation was proposed. The theoretical analysis correlated with the experimental results well. The rate determining step was found to be the anodic oxidation of gluconate anion to form gluconate free radical.

R1s -->�� R2s + e- (1)
And the current of the anodic oxidation of sodium gluconate can be expressed as

i=((0.89[NaC6H11O7])/(0.7357+[NaC6H11O7]))*exp(0.37Fn2/RT) (2)

where F is faraday’s constant and is the overpotantial of forming gluconate free radical from gluconate anion.

In cathodic oxidative system, using Ce4+/Ce3+,Fe3+/Fe2+and V3+/V2+ as redox medicators in divided cell are studied. The oxygen is reduced to form hydrogen peroxide at cathode. The OH free radical decomposed form hydrogen peroxide. The OH free radical oxidize sodium gluconate to from D-arabinose. The experimental results indicated that the mediator couple enhanced current efficiency relative to and at 60 mM sodium gluconate, 25℃ with a current density of 1.32 in cathodic chamber. But reaction has many side reactions and the current efficiency of D-arabinose is low, about 19%.

In paired electro-oxidative system, by combining the cathodic and anodic oxidation in both undivided and divided cells are studied. In undivided cell, applying Fe2+/Fe3+as redox mediator for anodic and cathodic paired electro-oxidation of sodium gluconate to D-arabinose, the experimental results show at a 200ml/min oxygen flow rate, 0.2N acetic butter solution contained 10mM Fe3+,25℃, both anodic and cathodic current density are 0.94mA/cm2, the total current efficiency is 75%, in the paired electro-oxidation system.

In divided cell, the experimental results indicate that the current efficiency of anodic/cathodic oxidation in the paired electro-oxidation is the same as that of anodic/cathodic oxidation only. So the maximum total current efficiency for the paired electro-oxidation of sodium gluconate to D-arabinose was 127% with a charge of 68.22 C being passed. The best current efficiency for anodic oxidation was 85% in this system which was found in a single anode as the working electrode. The mediator in the catholyte generates the best current efficiency with the maximum value is 41% in the a cathodic system. The current efficiency for the electro-oxidation of sodium gluconate to D-arabinose in cathodic chamber was unsatisfied. In this study, the highest current efficiency of D-arabinose is 75% in undivided cell and 127% in divided cell. The production of D-arabinsoe via paired electro-oxidation in dived cell is better than in undivided cell. The current efficiency in paired electro-oxidative divided cell’s system is 1.5 times of that of anodic oxidation. Accordingly, the operation in divided cell is better. The paired electro-oxidation of sodium gluconate to form D-arabinsoe is a new process and a potential for commercialization.
中文摘要 1
英文摘要 4
誌謝 7
目錄 8
表目錄 12
圖目錄 13
符號說明 15

第一章前言 16
1.1 有機電解合成 16
1.2 電解反應考慮因素 22
1.3 電化學合成法 24
1.3.1 直接電極催化法 25
1.3.2 間接電極催化法 26
1.3.2.1 均勻系氧化還原媒子 27
1.3.2.2 非均勻系氧化還原媒子 28
1.3.3 組對電解法 33
1.4 右旋阿拉伯醣之簡介 36
1.5研究動機與本文大綱 40

第二章 實驗步驟與方法 41
2.1 陽極氧化葡萄糖酸鈉的實驗裝置及其操作步驟 41
2.1.1 電極之電化學行為 41
2.1.2 電解氧化葡萄糖酸鈉 41
2.1.3 動力學的分析 44
2.2 陰極氧化葡萄糖酸鈉的實驗裝置及其操作步驟 44
2.2.1 電極之電化學行為 44
2.2.2 電解氧化葡萄糖酸鈉 44
2.3 陰陽極組對電解葡萄糖酸鈉之氧化反應 45
2.4 分析方法 47
2.4.1葡萄糖酸鈉與阿拉伯醣的分析 47
2.5 使用的藥品 49

第三章陽極電解氧化葡萄糖酸鈉之研究 51
3.1 陽極氧化系統簡介 52
3.2 實驗結果與討論 53
3.2.1 陽極之電化學行為 53
3.2.2 陽極氧化葡萄糖酸鈉生成阿拉伯醣之研究 56
3.2.2.1有無氧化還原媒子對葡萄糖酸鈉氧化的影響 56
3.2.2.2 電流密度對葡萄糖酸鈉氧化的影響 56
3.2.2.3 葡萄糖酸鈉起始濃度對葡萄糖酸鈉氧化的影響 57
3.2.2.4 pH值對葡萄糖酸鈉氧化的影響 58
3.2.2.5 溫度對葡萄糖酸鈉氧化的影響 58
3.2.3 無氧化還原媒子下直接電解氧化葡萄糖酸鈉動力分析探討 69
3.2.3.1 前言 69
3.2.3.2 理論動力推導 69
3.2.3.3 結果與討論 76
3.4 結論 84

第四章 陰極電解氧化葡萄糖酸鈉之研究 85
4.1 陰極氧化系統簡介 85
4.2 理論分析 87
4.3 實驗結果與討論 87
4.3.1 陰極之電化學行為 87
4.3.2 陰極室氧化還原媒子之探討 92
4.3.3 HPLC 分析結果 93
4.4 結論 101

第五章 陰陽極組對電解反應 102
5.1 陰陽極組對電解系統 102
5.2結果與討論 102
5.2.1 葡萄糖酸鈉在非分離式電解槽中的氧化 102
5.2.1.1 添加氧化還原媒子之電流效率 102
5.2.2葡萄糖酸鈉在分離式電解槽中的氧化 106
5.2.2.1電流與電位的關係 106
5.2.2.2電流效率 106
5.2.3 分離式/非分離式電解槽之電流效率比較 109
5.3結論 109

第六章 總結與未來工作建議 111
6.1綜合討論 111
6.2總結 114
6.3未來工作建議 116

参考文獻 117
自述 126
著作 127
Alkire, R. C. and Lisius , J. D., "Incorporation of Complex Reaction Sequences in Engineering Models of Electrolytic Cells: Paired Synthesis of Prolyene Oxide in an Undivided Cell", J. Electrochem. Soc., 132, 1879-1888 (1985).

Baizer, M. M., "Electrolytic Reductive Coupling", Chemosphere , 111, 215 (1979)

Baizer, M. M. and Lund, H. "Organic Electrochemistry", second edition, Marcel Dekker, Inc., New York (1983).

Baizer, M. M. and Hallcher, R C. "Paired Electro-Organic Syntheses I. Cathodic Adipate with Anodic Bimalonate", J. Electrochem. Soc., 123,809-813 (1976)

Baizer, M. M,.Nonkaa, T., Park, K, Satio, Y. and Nobe, K. "Electrochemical Conversion of 2,3-Butmedolto2-ButmoneinUndiVidedFlowCells:a Paried Synthesis", J. Appl. Electrochem., 14, 197-208 (1984)

Bard, A.J., Faulkner, L. R., “Eletrochemical methods fundamentals and applications ” , 2001

Bejerano, T., Germain, A. and Goodridge, F. "The Electro-chemical Production of Propylene Oxide in a Small Pilot Plant", Trans. IChemE., 58, 28-32 (1980).

Beck, R. H. F , Elseviers, M. and Vilovrd, C. “Process for the Production of Xylitol” US patent 5714602 (1998)

Chang, H. C., A. Ueno, H. Yamada, T. Matsue and I. Uchide, " Immobilized-Enzyme Electrode for Nicotinamide Adenine Dinucleotide (Reduced Form) (NADH) Sensing and Application to the Kinetic Studies of NADH Dependent De- hydrogenases", Analyst. August., 116, 793-796 (1991).

Chen, Y. L.and Chou, T. C. , “Proton Transport within a Perfluorosulfonic Acid Membrane between Aqueous Anolyte and Organic Catholyte”, Electrochimica Acta, Vol. 38 (15), 2171-2175. (1993)

Chen, Y. L.and Chou, T. C., “Electrochemical Reduction of Benzaldehyde Using Ag/Nafion as an Electrode”, I&EC, Vol. 33 (3), 676-680 (1994).

Chen, Y. L “Electro-oxidation of Organic Compounds via Paired Electrolysis” dissertation of Ph.D ,NCKU, Tainan, Taiwan, ROC (1996).

Childs, W. V. and Walters, H. C. "The Phillips Process for the Electrohydrodimerization of Acrylonitrile", AlChE Symp. Series, 75 (185), 19-25 (1979).

Chou, T. C., Do,J. S., Hwang, B. J. and Jow, J. J., "The Role of Redox Mediators in the Anodic Oxidation of Glucose", J. Chem. Eng. Commun., 43, 47-62 (1987).

Chou, T. C., Do,J. S., Hwang, B. J. and Jow, J. J., "On the Current Efficiency of the Paired Electrolysis of Glucose to Produce Sorbitol and Calcium Gluconate Simul-taneously", J. ChIChe., 19, 1-7 (1988).

Cifton, M. J. and Savall, A. “Numerical Models for Reaction Catalysed by Homogeneous Mediators: the Case of Fenton’s Reagent”, J. Appl. Electrochem, 16, 812-818 (1986)

Condit, P. C., "Electrolytic Reduction of Phthalic Acid", Ind. Eng. Chem., 48, 1252-12577 (1956).

DalRymple, I. M. and J. P. Millington, "An Indirect Electro-chemical Process for the Production of Nathaquione" J. Appl. Electrochem., 16, 885-893 (1986).

Delobeau, D.; Moine, D and Freres, R.,”Procress for the Preparation of D-Arabitol” US patent 5846794, (1998)

Do, J. S and Chen, C. P. “In Situ Oxidative Degradation of Formaldehyde with Electrogenerated Hydrogen Peroxide” J. Electrochem. Soc, 140, 6 (1993)

DOBLER W.; PAUST J.’ Continuous epimerization of sugars, in particular D-arabinose to D-ribose’ US patent, US5015296 (1991)

Fleischmann, M., Korinec, K. and Pletcher, D., "The Oxidation of Organic Compounds at a Nickel Anode in Alkaline Solu-tion", J. Electroanal. Chem., 31, 39-48 (1971).

Fleischmann , M., K. "The Kinetics and Mechanism of Amines and Alcohols at Oxide-Covewed Ni, Ag, Cu and Co Electrodes", Royal Society of Chem. Jr.: Perkin Trans. II., 1396-1403 (1972).

Fletcher, H. G , Harry, J. , Diehl, W. and Hudson, C. S., “Improvements in the Preparation of D-Arabinose from Calcium D-Gluconate and of D-Lyxose frpm Calcium D-Calatonate” J. Am. Chem. Soc ,72, 10, 4546-4546 (1950)

Foreman, R. W. and Sprague, J. W. " A Melamime Process Based on Hydroggen Cyanide and Ammonia Involving Elec-trolytic Conversion of Hydroggen Cyanide ", Ind. Eng. Chem. Prod. Res. Dev., 2, 303-307 (1963).

Jiricny, V. ; Stanek, V. and Borovcova, M.”Method of Production of D-Arabinsoe” USA patent 4950366 (1990)

Jirieny, V. and Stanek, V. “Production of D-Arabinose in a Pilot Plant Fluidized Bed Electrochemical Reactor” J. of Applied Electrochemistry, 24,9(1994)

Jow, J. J., Lee, A. C. and Chou, T. C. "Paired Electro-oxidation, I. Production of Benzaldehyde", J. Appl. Electrochem., 17, 753-759 (1987)

Kolthof, I. M. and Woods, R. “Polarographic Kinetic Cu2+ in Chloride Medium” , J. Electroanal. Chem. B 12 ,385-390 (1966)

Kramer, K., Robertson,P. M. , "Indirect Electrolytic Oxidation of Some Aromatic Derivatives", J. Appl. Electrochem., 10, 29-36 (1980).

Kyriaco, D. K., "Basic Electroorganic Synthesis", John Wiley & sons. New York (1981).

Goldstein, S. , Meyerstein, D. and Czapski , G. “The Fenton Reagent “ , Free Radical Biology & Medicine ,15 ,435-445 (1982)

Hocket, R. C. and Hudson, C. S., “Improvements in Preparation of d-Arabinose from Calcium Gluconate” ,J. Am. Chem. Soc ,56, 7, 1632-1633 (1934)

Hourdin, G. , Germain, A. , Moreau, C. and Fajula, F. ,”The Catalysis of the Ruff Oxidative Degradation of Aldonic Acid by Titanium-Containing Zeolites” Catalysis Letters 69, 241-244 (2000)

Lipczynska-Kochany, E. “Degradation of Aqueous Nitrophenols and Nitrobenzene by Means of The Fenton Reaction” , Chemosphere , 22, 529-536 (1991)

Matsue, T., Fujihira, M. and Osa, T. "Oxidation of Alkylbenzenes by Electrogenerated Hydroxyl Radical", J. Electrochem. Soc., 128, 2565-2569(1981)

Moriarty, R. M. and Brumer, H. “Toward s General Synthesis of A-Ring Trihydroxylated Vitamin D Analogs: Synthesis of an A-Ring Synthon of ED-71 from D-Arabinose” Tetahedron Letters 36, 51, 9265-9268, (1995)

Nishiguchi, I., "Recent Progress of Industrial Electro-Organic Synthesis", 2rd International Symposium on Electrochem., NCKU, Tainan, Taiwan, ROC (1985).

Nole, M., Anatharaman, P. N. and Udupa, H. V. K., "An Electrochemical Technique for the Reduction of Aromatic Nitro Compounds", J. Appl. Electrochem., 12, 291-298 (1982).

Noyes, A. A., Hoard ,J. L. and Pitzer, K. S., "Argentic Salts in Acid Solution. I. The Oxidation and Reduction Reactions", J. Am. Chem. Soc., 57, 1221-1242 (1935).

Okano, M. and Aratani, T. "The Reaction of Monoketones with Mn(III) Acetate", Bull. Chem. Soc. Jpn., 49, 2811-2814 (1976).

Osa, T. “Reaction of some Alkylbenzenes with Electrogenerated Hydroxyl Radical”, 1st international Symposium on Electrochemistry, Hsinchu, Taiwan (1982)

Park, K., Pintauro, P. N., Baizer M. M. and Nobe K., "Flow Reactor Studies of the Paired Electro-Oxidation and Elec-troreduction of Glucose", J. Electrochem. Soc., 132, 1850-1855 (1985).

Pergola, F. ; Nucci, L. ; Pezzatini, G. ; Wei, H. and Guidelli, R. “Direct Electro-Oxidation of D-Gluconic Acid to D-Arabinose” Electrochimica Acta, 39, 10, 1415-1417, (1994)

Pezzatini, P. ; Wei, H. and Guidelli, R.”Electro-oxidative Decarboxylation of D-Gluconic Acid to D-Arabinose on Graphite Electrodes” Electroanalysis, 4, 129-132, (1992)

Pintauro, P. N., Johnson, D. K., Park, K., Baizer, M. M. and Nobe, K. "The Paired Electrochemical Synthesis of Sorbital and Gluconic Acid in Undivided Flow Cells I.", J. Appl. Electrochem., 14, 209-220.( 1984)

Prescott, J. H., "Monsanto's Unique Press Brings Electro- chemistry to Organic", Chem. Eng., 72, 238-243 (1965).

Ramaswamy, R., Venkatachalapathy ,M. S. and Udupa, H. V. K. "Improvement in the Electrolytic Preparation of lodoform", J. Electrochem. Soc., 110, 294-297 (1963).


Ruppert, G. and Bauer, R. “Mineralization of Cyclic Organic Water Contaminants by the Photo-Fenton Reaction – Influence of Structure and Substituents” , Chemosphere ,27 ,1339-1347 (1993)

Simons, J. H., "Electrochemical Process for the Production of Fluorocarbons", J. Electrochem. Soc. 96, 47-67 (1949).


Skinner, J. F., “Rotating Ring Disk Electrode Study of the Hydrogen Peroxide Oxidation of Fe(II) and Cu(I) in Hydrochloric Acid”, J. Electrochem. Soc. 127, 315-324 (1980)

Steckhan, E. "Indirect Electroorgenic Syntheses- A Modem Chapter of Organic electrochemistry", Angew Chem. Int. Ed. Engl., 25, 683-701 (1986)

Steckhan, E. , "Organic Syntheses with Electrochemically Regenerable Redox Systems" in "Topics in Current Chemistry vol. 142", Steckhan, E., ed., Springer-Verlag, New York and London, (1987)

Tibensky, V.”A Method of preparation of l-arabinose” patents 1182099 (1970)


Tomat, R. and Rigo, A. “Electrochemical Production of OH radicals and their Reaction with Toluene”, J. Appl. Electrochem., 6, 257-261 (1984)

Vallieres, C and Matlosz, M. ,” A Multisectioned Porous Electrode for Synthesis of D-Arabinose” J. of the Electrochemical Society, 146, 8, 2933-2939 , (1999)


Waggenknecht, J. H., "Industrial Organic Electrosynthesis", J. Chem. Ed., 60(4), 271-273 (1983)

Weinberg, N. L. and H. R. Weinberg, "Electrochemical Oxidation Organic Compouunds", Chem. Rev., 68, 449-523 (1968).

Weinberg, N. L., "Techniques for Electro-organic Synthesis", Wiley Tnterscience, New York (1975).

Weinberg, N. L"Candidate Electro-organic Process", AlChE Symp. Se-ries, 75(185), 31-35 (1979).

Weinberg, N. L "Electrosyynthesis Technolgy", J. Chem. Ed., 60(4), 268-271 (1983).

Wellmann, J. and Steckhan, E. "Reductive Coupling of Benzy and Allyic Halides with Catalytic Amounts of Cr(II) Reagent Using an Electrochemical Regeneration Procedure", Synthe-sis, 901-905 (1978).

Wendt, H. "Electrocatalysis in Organic Electrochemistry", Electrochim. Acta, 29, 1513-1525(1984)

Wille, H. J., Knittel, D., Kastening, B. and Merdel, J. "Electrosynthesis of Sulphones: Coupled Cathodic-Anodic Process", J. Appl . Electrochem., 10, 489-494. (1980)

Yoshio, N and Kenkyusho, N, “Preparation of D-Arabinose” Japan patent 58039695 (1983)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top