跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/12 07:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳尹杰
研究生(外文):Yin-Chien Chen
論文名稱:一種比色探針靈敏檢測磷酸鹽
論文名稱(外文):A colorimetric probe for sensitive detection of phosphate
指導教授:胡焯淳、邱泰嘉
指導教授(外文):Cho-Chun Hu、Tai-Chia Chiu
學位類別:碩士
校院名稱:國立臺東大學
系所名稱:應用科學系
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:51
中文關鍵詞:二氧化鈦奈米管;甲基藍;磷酸鹽;三磷酸腺苷
外文關鍵詞:titanium dioxide nanotube; methyl blue; phosphate; adenosine triphosphate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,我們提出了一個新型比色探針 (TNT@MB),藉由磷酸鹽與二氧化鈦奈米管 (TNT) 之間強結合力來檢測磷酸鹽。二氧化鈦奈米管藉由二氧化鈦奈米粒子水熱合成。二氧化鈦奈米管平均長度為200 ± 50 奈米,平均寬度為12 ± 5 奈米。二氧化鈦奈米管的表面電位藉由動態光散射儀 (DLS) 檢測。結果得知二氧化鈦奈米管的零點電荷 (pHpzc) 為4。所以比色探針藉由TNT在酸性環境下吸附甲基藍製備,且吸附行為可透過靜電作用解釋。 TNT@MB的最佳合成條件為0.05g TNT與1μmole甲基藍在pH 2下反應90分鐘。
TNT與TNT@MB的性質藉由紫外可見光漫反射光譜儀、穿透式電子顯微鏡、FT-IR光譜儀及X射線電子能譜進行分析。TNT@MB檢測磷酸鹽是藉由紫外可見光光譜進行研究。檢測磷酸鹽的線性範圍為1- 40μM,偵測極限為0.59μM。我們在相同條件下檢測典型陰離子和金屬離子存在下的吸收強度變化,結果表明TNT @ MB系統中的吸收只有很小的干擾。通過對湖水樣品的檢測,研究了該方法的回收率實驗,回收率為102.5%~103.6%,相對標準偏差為5.6%(n = 3)。此外,該方法還用於檢測ATP,ADP和AMP。通過在鹼性溶液中除去TNT表面的甲基藍和磷酸鹽,然後TNT再次吸附甲基藍,重複步驟進行再生循環研究。三次循環後,再生的TNT仍然可以保持幾乎100%的甲基藍吸附效率,這表明TNT @ MB具有優異的可回收性。這些結果表明,此比色探針具有環保,廉價,簡單且易於觀察的優點。
In the proposed study, we report a novel colorimetric probe (TNT@MB) to detect phosphate based on a strong binding ability of phosphate with titanium dioxide nanotube (TNT). The titanium dioxide nanotube (TNT) was synthesized from titanium dioxide nanoparticles (P25) by hydrothermal treatment. The obtained TNT had an average length of 200 ± 50 nm and average width of 12 ± 50 nm. The zeta-potential of TNT was investigated by dynamic light-scattering (DLS). The result showed that the pH of point of zero charge (pHpzc) of TNT was 4. Therefore, the colorimetric probe (TNT@MB) was prepared by adsorbing methyl blue with TNT in acidic condition and the adsorption behavior could be interpreted via the electrostatic interaction. The optimal synthesis condition of TNT@MB was reacted by 0.05g TNT with 1μmole methyl blue at pH 2 for 90 min.
The properties of TNT and TNT@MB were characterized by UV-vis diffuse reflection spectrum, transmission electron microscopy (TEM), FT-IR spectrum and X-ray electron spectroscopy (XPS). The sensing behaviors of TNT@MB toward phosphate were investigated by UV-visible spectroscopy. The linear range and the detection limit of the adsorption method based on TNT@MB for the detection of phosphate were 1- 40μM and 0.59μM, respectively. We examine the absorption intensity changes in the presence of typical anions and metal ions under the same conditions and the results suggested that there was only small interference in the absorption of the TNT@MB system. The recoveries experiment of the proposed method was studied by detecting the lake water samples and the recoveries were from 102.5% to 103.6% while relative standard deviation bellowed 5.6% (n=3). Moreover, this method also used to detect ATP, ADP and AMP. The regeneration cycle study was performed by removing the methyl blue and phosphate of the TNT surface in an alkaline solution and then methyl blue was adsorbed again by TNT. Interestingly, the regenerated TNT can still maintain almost 100% of methyl blue adsorption efficiency even after three cycles, indicating the TNT@MB had excellent recyclability. These results indicate that the colorimetric probe had the advantages of being environmentally friendly, inexpensive, simple, and easy to observe.
口試委員會審定書 ii
致謝..................................................................................................................................iv
中文摘要 v
Abstract vi
目 錄 vii
圖 目 錄 ix
表 目 錄 xi
Chapter 1 緒論 1
1.1 前言 1
1.1.1 磷酸鹽的測定 1
1.1.2 材料的選擇 4
1.1.3 研究目的 6
Chapter 2 實驗方法 7
2.1 化學試劑 7
2.2 儀器分析與鑑定 7
2.3 TNT與TNT@MB之合成 8
2.4 磷酸鹽之檢測方法 8
2.5 重複利用性 9
2.6 湖水中檢測磷酸鹽 9
2.7 ATP, ADP和AMP的檢測 9
Chapter 3 結果與討論 10
3.1 TNT與TNT@MB的鑑定 10
3.2 合成TNT@MB的條件優化 17
3.3 TNT@MB檢測磷酸鹽 21
3.4 TNT@MB檢測ATP、ADP及AMP 31
Chapter 4 結論 33
參考文獻 34
[1] D. Cordell, J.-O. Drangert, S. White, The story of phosphorus: global food security and food for thought, Global environmental change, 19 (2009) 292-305.
[2] A. Rotzetter, C. Kellenberger, C. Schumacher, C. Mora, R. Grass, M. Loepfe, N. Luechinger, W.J. Stark, Combining phosphate and bacteria removal on chemically active filter membranes allows prolonged storage of drinking water, Advanced Materials, 25 (2013) 6057-6063.
[3] J.M. Estela, V. Cerdà, Flow analysis techniques for phosphorus: an overview, Talanta, 66 (2005) 307-331.
[4] M.D. Patey, M.J. Rijkenberg, P.J. Statham, M.C. Stinchcombe, E.P. Achterberg, M. Mowlem, Determination of nitrate and phosphate in seawater at nanomolar concentrations, TrAC Trends in Analytical Chemistry, 27 (2008) 169-182.
[5] C. Warwick, A. Guerreiro, A. Soares, Sensing and analysis of soluble phosphates in environmental samples: a review, Biosensors and Bioelectronics, 41 (2013) 1-11.
[6] V.M. de Carvalho Aguiar, J.A.B. Neto, C.M. Rangel, Eutrophication and hypoxia in four streams discharging in Guanabara Bay, RJ, Brazil, a case study, Marine Pollution Bulletin, 62 (2011) 1915-1919.
[7] G.M. Hallegraeff, A review of harmful algal blooms and their apparent global increase, Phycologia, 32 (1993) 79-99.
[8] W. Liu, Z. Du, Y. Qian, F. Li, A specific colorimetric probe for phosphate detection based on anti-aggregation of gold nanoparticles, Sensors and Actuators B: Chemical, 176 (2013) 927-931.
[9] D. Talarico, S. Cinti, F. Arduini, A. Amine, D. Moscone, G. Palleschi, Phosphate detection through a cost-effective carbon black nanoparticle-modified screen-printed electrode embedded in a continuous flow system, Environmental Science & Technology, 49 (2015) 7934-7939.
[10] S. Cosnier, C. Gondran, J.-C. Watelet, W. De Giovani, R.P. Furriel, F.A. Leone, A Bienzyme Electrode (Alkaline Phosphatase− Polyphenol Oxidase) for the Amperometric Determination of Phosphate, Analytical Chemistry, 70 (1998) 3952-3956.
[11] J.B. Quintana, R. Rodil, T. Reemtsma, Determination of phosphoric acid mono-and diesters in municipal wastewater by solid-phase extraction and ion-pair liquid chromatography− tandem mass spectrometry, Analytical Chemistry, 78 (2006) 1644-1650.
[12] M.A. Rahman, D.-S. Park, S.-C. Chang, C.J. McNeil, Y.-B. Shim, The biosensor based on the pyruvate oxidase modified conducting polymer for phosphate ions determinations, Biosensors and Bioelectronics, 21 (2006) 1116-1124.
[13] J. Xu, Y. Zhou, G. Cheng, M. Dong, S. Liu, C. Huang, Carbon dots as a luminescence sensor for ultrasensitive detection of phosphate and their bioimaging properties, Luminescence, 30 (2015) 411-415.
[14] H. Xu, C.-S. Cao, B. Zhao, A water-stable lanthanide-organic framework as a recyclable luminescent probe for detecting pollutant phosphorus anions, Chemical Communications, 51 (2015) 10280-10283.
[15] V. Borse, P. Jain, M. Sadawana, R. Srivastava, ‘Turn-on’fluorescence assay for inorganic phosphate sensing, Sensors and Actuators B: Chemical, 225 (2016) 340-347.
[16] X. Song, Y. Ma, X. Ge, H. Zhou, G. Wang, H. Zhang, X. Tang, Y. Zhang, Europium-based infinite coordination polymer nanospheres as an effective fluorescence probe for phosphate sensing, RSC Advances, 7 (2017) 8661-8669.
[17] B.B. Chen, R.S. Li, M.L. Liu, H.Y. Zou, H. Liu, C.Z. Huang, Highly selective detection of phosphate ion based on a single-layered graphene quantum dots-Al3+ strategy, Talanta, 178 (2018) 172-177.
[18] P.-H. Li, J.-Y. Lin, C.-T. Chen, W.-R. Ciou, P.-H. Chan, L. Luo, H.-Y. Hsu, E.W.-G. Diau, Y.-C. Chen, Using gold nanoclusters as selective luminescent probes for phosphate-containing metabolites, Analytical Chemistry, 84 (2012) 5484-5488.
[19] Y. Huo, L. Qi, X.-J. Lv, T. Lai, J. Zhang, Z.-Q. Zhang, A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles, Biosensors and Bioelectronics, 78 (2016) 315-320.
[20] Y. Mao, T. Fan, R. Gysbers, Y. Tan, F. Liu, S. Lin, Y. Jiang, A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles, Talanta, 168 (2017) 279-285.
[21] J. Liang, H. Xiong, W. Wang, W. Wen, X. Zhang, S. Wang, “Luminescent-off/on” sensing mechanism of antibiotic-capped gold nanoclusters to phosphate-containing metabolites and its antibacterial characteristics, Sensors and Actuators B: Chemical, 255 (2018) 2170-2178.
[22] F. Li, X. Hu, F. Wang, B. Zheng, J. Du, D. Xiao, A fluorescent “on-off-on” probe for sensitive detection of ATP based on ATP displacing DNA from nanoceria, Talanta, 179 (2018) 285-291.
[23] J. Lu, D. Liu, J. Hao, G. Zhang, B. Lu, Phosphate removal from aqueous solutions by a nano-structured Fe–Ti bimetal oxide sorbent, Chemical Engineering Research and Design, 93 (2015) 652-661.
[24] X. Ge, X. Song, Y. Ma, H. Zhou, G. Wang, H. Zhang, Y. Zhang, H. Zhao, P.K. Wong, Fabrication of hierarchical iron-containing MnO 2 hollow microspheres assembled by thickness-tunable nanosheets for efficient phosphate removal, Journal of Materials Chemistry A, 4 (2016) 14814-14826.
[25] Y. Yang, J. Wang, X. Qian, Y. Shan, H. Zhang, Aminopropyl-functionalized mesoporous carbon (APTMS-CMK-3) as effective phosphate adsorbent, Applied Surface Science, 427 (2018) 206-214.
[26] S.A. Kang, W. Li, H.E. Lee, B.L. Phillips, Y.J. Lee, Phosphate uptake by TiO2: Batch studies and NMR spectroscopic evidence for multisite adsorption, Journal of colloid and interface science, 364 (2011) 455-461.
[27] P. Connor, A. McQuillan, Phosphate adsorption onto TiO2 from aqueous solutions: an in situ internal reflection infrared spectroscopic study, Langmuir, 15 (1999) 2916-2921.
[28] Y. Ke, B. Garg, Y.-C. Ling, A novel graphene-based label-free fluorescence ‘turn-on’nanosensor for selective and sensitive detection of phosphorylated species in biological samples and living cells, Nanoscale, 8 (2016) 4547-4556.
[29] S. MiarAlipour, D. Friedmann, J. Scott, R. Amal, TiO2/porous adsorbents: Recent advances and novel applications, Journal of Hazardous Materials, 341 (2018) 404-423.
[30] L. Wu, Y. Qiu, M. Xi, X. Li, C. Cen, Fabrication of TiO 2 nanotubes-assembled hierarchical microspheres with enhanced photocatalytic degradation activity, New Journal of Chemistry, 39 (2015) 4766-4773.
[31] M.-J. López-Muñoz, A. Arencibia, L. Cerro, R. Pascual, Á. Melgar, Adsorption of Hg (II) from aqueous solutions using TiO2 and titanate nanotube adsorbents, Applied Surface Science, 367 (2016) 91-100.
[32] D. Sánchez-Rodríguez, M.G.M. Medrano, H. Remita, V. Escobar-Barrios, Photocatalytic properties of BiOCl-TiO2 composites for phenol photodegradation, Journal of Environmental Chemical Engineering, 6 (2018) 1601-1612.
[33] S.L. Wang, J. Li, S. Wang, J.e. Wu, T.I. Wong, M.L. Foo, W. Chen, K. Wu, G.Q. Xu, Two-Dimensional C/TiO2 Heterogeneous Hybrid for Noble-Metal-Free Hydrogen Evolution, ACS Catalysis, 7 (2017) 6892-6900.
[34] P. Sharma, N. Hussain, D.J. Borah, M.R. Das, Kinetics and adsorption behavior of the methyl blue at the graphene oxide/reduced graphene oxide nanosheet–water interface: a comparative study, Journal of Chemical & Engineering Data, 58 (2013) 3477-3488.
[35] I. Hussain, Y. Li, J. Qi, J. Li, L. Wang, Nitrogen-enriched carbon sheet for Methyl blue dye adsorption, Journal of Environmental Management, 215 (2018) 123-131.
[36] Y. Shu, Y. Shao, X. Wei, X. Wang, Q. Sun, Q. Zhang, L. Li, Synthesis and characterization of Ni-MCM-41 for methyl blue adsorption, Microporous and Mesoporous Materials, 214 (2015) 88-94.
[37] M. Pan, X. Lin, J. Xie, X. Huang, Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites, RSC Advances, 7 (2017) 4492-4500.
[38] R. Atchudan, T.N.J.I. Edison, K.R. Aseer, S. Perumal, N. Karthik, Y.R. Lee, Highly fluorescent nitrogen-doped carbon dots derived from Phyllanthus acidus utilized as a fluorescent probe for label-free selective detection of Fe3+ ions, live cell imaging and fluorescent ink, Biosensors and Bioelectronics, 99 (2018) 303-311.
[39] N. Lin, J. Li, Z. Lu, L. Bian, L. Zheng, Q. Cao, Z. Ding, A turn-on coordination nanoparticle-based fluorescent probe for phosphate in human serum, Nanoscale, 7 (2015) 4971-4977.
[40] C. Dai, C.-X. Yang, X.-P. Yan, Ratiometric fluorescent detection of phosphate in aqueous solution based on near infrared fluorescent silver nanoclusters/metal–organic shell composite, Analytical Chemistry, 87 (2015) 11455-11459.
[41] D. Yan, Y. He, Y. Ge, G. Song, Fluorescent Detection of Phosphate in Aqueous Solution Based on Near Infrared Emission Ag 2 S QDs/Metal− Organic Shell Composite, Journal of Fluorescence, 27 (2017) 227-233.
[42] G. He, L. Zhao, K. Chen, Y. Liu, H. Zhu, Highly selective and sensitive gold nanoparticle-based colorimetric assay for PO43− in aqueous solution, Talanta, 106 (2013) 73-78.
[43] C. Chen, L. Lu, Y. Zheng, D. Zhao, F. Yang, X. Yang, A new colorimetric protocol for selective detection of phosphate based on the inhibition of peroxidase-like activity of magnetite nanoparticles, Analytical Methods, 7 (2015) 161-167.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top