|
[1] D. Cordell, J.-O. Drangert, S. White, The story of phosphorus: global food security and food for thought, Global environmental change, 19 (2009) 292-305. [2] A. Rotzetter, C. Kellenberger, C. Schumacher, C. Mora, R. Grass, M. Loepfe, N. Luechinger, W.J. Stark, Combining phosphate and bacteria removal on chemically active filter membranes allows prolonged storage of drinking water, Advanced Materials, 25 (2013) 6057-6063. [3] J.M. Estela, V. Cerdà, Flow analysis techniques for phosphorus: an overview, Talanta, 66 (2005) 307-331. [4] M.D. Patey, M.J. Rijkenberg, P.J. Statham, M.C. Stinchcombe, E.P. Achterberg, M. Mowlem, Determination of nitrate and phosphate in seawater at nanomolar concentrations, TrAC Trends in Analytical Chemistry, 27 (2008) 169-182. [5] C. Warwick, A. Guerreiro, A. Soares, Sensing and analysis of soluble phosphates in environmental samples: a review, Biosensors and Bioelectronics, 41 (2013) 1-11. [6] V.M. de Carvalho Aguiar, J.A.B. Neto, C.M. Rangel, Eutrophication and hypoxia in four streams discharging in Guanabara Bay, RJ, Brazil, a case study, Marine Pollution Bulletin, 62 (2011) 1915-1919. [7] G.M. Hallegraeff, A review of harmful algal blooms and their apparent global increase, Phycologia, 32 (1993) 79-99. [8] W. Liu, Z. Du, Y. Qian, F. Li, A specific colorimetric probe for phosphate detection based on anti-aggregation of gold nanoparticles, Sensors and Actuators B: Chemical, 176 (2013) 927-931. [9] D. Talarico, S. Cinti, F. Arduini, A. Amine, D. Moscone, G. Palleschi, Phosphate detection through a cost-effective carbon black nanoparticle-modified screen-printed electrode embedded in a continuous flow system, Environmental Science & Technology, 49 (2015) 7934-7939. [10] S. Cosnier, C. Gondran, J.-C. Watelet, W. De Giovani, R.P. Furriel, F.A. Leone, A Bienzyme Electrode (Alkaline Phosphatase− Polyphenol Oxidase) for the Amperometric Determination of Phosphate, Analytical Chemistry, 70 (1998) 3952-3956. [11] J.B. Quintana, R. Rodil, T. Reemtsma, Determination of phosphoric acid mono-and diesters in municipal wastewater by solid-phase extraction and ion-pair liquid chromatography− tandem mass spectrometry, Analytical Chemistry, 78 (2006) 1644-1650. [12] M.A. Rahman, D.-S. Park, S.-C. Chang, C.J. McNeil, Y.-B. Shim, The biosensor based on the pyruvate oxidase modified conducting polymer for phosphate ions determinations, Biosensors and Bioelectronics, 21 (2006) 1116-1124. [13] J. Xu, Y. Zhou, G. Cheng, M. Dong, S. Liu, C. Huang, Carbon dots as a luminescence sensor for ultrasensitive detection of phosphate and their bioimaging properties, Luminescence, 30 (2015) 411-415. [14] H. Xu, C.-S. Cao, B. Zhao, A water-stable lanthanide-organic framework as a recyclable luminescent probe for detecting pollutant phosphorus anions, Chemical Communications, 51 (2015) 10280-10283. [15] V. Borse, P. Jain, M. Sadawana, R. Srivastava, ‘Turn-on’fluorescence assay for inorganic phosphate sensing, Sensors and Actuators B: Chemical, 225 (2016) 340-347. [16] X. Song, Y. Ma, X. Ge, H. Zhou, G. Wang, H. Zhang, X. Tang, Y. Zhang, Europium-based infinite coordination polymer nanospheres as an effective fluorescence probe for phosphate sensing, RSC Advances, 7 (2017) 8661-8669. [17] B.B. Chen, R.S. Li, M.L. Liu, H.Y. Zou, H. Liu, C.Z. Huang, Highly selective detection of phosphate ion based on a single-layered graphene quantum dots-Al3+ strategy, Talanta, 178 (2018) 172-177. [18] P.-H. Li, J.-Y. Lin, C.-T. Chen, W.-R. Ciou, P.-H. Chan, L. Luo, H.-Y. Hsu, E.W.-G. Diau, Y.-C. Chen, Using gold nanoclusters as selective luminescent probes for phosphate-containing metabolites, Analytical Chemistry, 84 (2012) 5484-5488. [19] Y. Huo, L. Qi, X.-J. Lv, T. Lai, J. Zhang, Z.-Q. Zhang, A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles, Biosensors and Bioelectronics, 78 (2016) 315-320. [20] Y. Mao, T. Fan, R. Gysbers, Y. Tan, F. Liu, S. Lin, Y. Jiang, A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles, Talanta, 168 (2017) 279-285. [21] J. Liang, H. Xiong, W. Wang, W. Wen, X. Zhang, S. Wang, “Luminescent-off/on” sensing mechanism of antibiotic-capped gold nanoclusters to phosphate-containing metabolites and its antibacterial characteristics, Sensors and Actuators B: Chemical, 255 (2018) 2170-2178. [22] F. Li, X. Hu, F. Wang, B. Zheng, J. Du, D. Xiao, A fluorescent “on-off-on” probe for sensitive detection of ATP based on ATP displacing DNA from nanoceria, Talanta, 179 (2018) 285-291. [23] J. Lu, D. Liu, J. Hao, G. Zhang, B. Lu, Phosphate removal from aqueous solutions by a nano-structured Fe–Ti bimetal oxide sorbent, Chemical Engineering Research and Design, 93 (2015) 652-661. [24] X. Ge, X. Song, Y. Ma, H. Zhou, G. Wang, H. Zhang, Y. Zhang, H. Zhao, P.K. Wong, Fabrication of hierarchical iron-containing MnO 2 hollow microspheres assembled by thickness-tunable nanosheets for efficient phosphate removal, Journal of Materials Chemistry A, 4 (2016) 14814-14826. [25] Y. Yang, J. Wang, X. Qian, Y. Shan, H. Zhang, Aminopropyl-functionalized mesoporous carbon (APTMS-CMK-3) as effective phosphate adsorbent, Applied Surface Science, 427 (2018) 206-214. [26] S.A. Kang, W. Li, H.E. Lee, B.L. Phillips, Y.J. Lee, Phosphate uptake by TiO2: Batch studies and NMR spectroscopic evidence for multisite adsorption, Journal of colloid and interface science, 364 (2011) 455-461. [27] P. Connor, A. McQuillan, Phosphate adsorption onto TiO2 from aqueous solutions: an in situ internal reflection infrared spectroscopic study, Langmuir, 15 (1999) 2916-2921. [28] Y. Ke, B. Garg, Y.-C. Ling, A novel graphene-based label-free fluorescence ‘turn-on’nanosensor for selective and sensitive detection of phosphorylated species in biological samples and living cells, Nanoscale, 8 (2016) 4547-4556. [29] S. MiarAlipour, D. Friedmann, J. Scott, R. Amal, TiO2/porous adsorbents: Recent advances and novel applications, Journal of Hazardous Materials, 341 (2018) 404-423. [30] L. Wu, Y. Qiu, M. Xi, X. Li, C. Cen, Fabrication of TiO 2 nanotubes-assembled hierarchical microspheres with enhanced photocatalytic degradation activity, New Journal of Chemistry, 39 (2015) 4766-4773. [31] M.-J. López-Muñoz, A. Arencibia, L. Cerro, R. Pascual, Á. Melgar, Adsorption of Hg (II) from aqueous solutions using TiO2 and titanate nanotube adsorbents, Applied Surface Science, 367 (2016) 91-100. [32] D. Sánchez-Rodríguez, M.G.M. Medrano, H. Remita, V. Escobar-Barrios, Photocatalytic properties of BiOCl-TiO2 composites for phenol photodegradation, Journal of Environmental Chemical Engineering, 6 (2018) 1601-1612. [33] S.L. Wang, J. Li, S. Wang, J.e. Wu, T.I. Wong, M.L. Foo, W. Chen, K. Wu, G.Q. Xu, Two-Dimensional C/TiO2 Heterogeneous Hybrid for Noble-Metal-Free Hydrogen Evolution, ACS Catalysis, 7 (2017) 6892-6900. [34] P. Sharma, N. Hussain, D.J. Borah, M.R. Das, Kinetics and adsorption behavior of the methyl blue at the graphene oxide/reduced graphene oxide nanosheet–water interface: a comparative study, Journal of Chemical & Engineering Data, 58 (2013) 3477-3488. [35] I. Hussain, Y. Li, J. Qi, J. Li, L. Wang, Nitrogen-enriched carbon sheet for Methyl blue dye adsorption, Journal of Environmental Management, 215 (2018) 123-131. [36] Y. Shu, Y. Shao, X. Wei, X. Wang, Q. Sun, Q. Zhang, L. Li, Synthesis and characterization of Ni-MCM-41 for methyl blue adsorption, Microporous and Mesoporous Materials, 214 (2015) 88-94. [37] M. Pan, X. Lin, J. Xie, X. Huang, Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites, RSC Advances, 7 (2017) 4492-4500. [38] R. Atchudan, T.N.J.I. Edison, K.R. Aseer, S. Perumal, N. Karthik, Y.R. Lee, Highly fluorescent nitrogen-doped carbon dots derived from Phyllanthus acidus utilized as a fluorescent probe for label-free selective detection of Fe3+ ions, live cell imaging and fluorescent ink, Biosensors and Bioelectronics, 99 (2018) 303-311. [39] N. Lin, J. Li, Z. Lu, L. Bian, L. Zheng, Q. Cao, Z. Ding, A turn-on coordination nanoparticle-based fluorescent probe for phosphate in human serum, Nanoscale, 7 (2015) 4971-4977. [40] C. Dai, C.-X. Yang, X.-P. Yan, Ratiometric fluorescent detection of phosphate in aqueous solution based on near infrared fluorescent silver nanoclusters/metal–organic shell composite, Analytical Chemistry, 87 (2015) 11455-11459. [41] D. Yan, Y. He, Y. Ge, G. Song, Fluorescent Detection of Phosphate in Aqueous Solution Based on Near Infrared Emission Ag 2 S QDs/Metal− Organic Shell Composite, Journal of Fluorescence, 27 (2017) 227-233. [42] G. He, L. Zhao, K. Chen, Y. Liu, H. Zhu, Highly selective and sensitive gold nanoparticle-based colorimetric assay for PO43− in aqueous solution, Talanta, 106 (2013) 73-78. [43] C. Chen, L. Lu, Y. Zheng, D. Zhao, F. Yang, X. Yang, A new colorimetric protocol for selective detection of phosphate based on the inhibition of peroxidase-like activity of magnetite nanoparticles, Analytical Methods, 7 (2015) 161-167.
|