|
[1] P. B. Bochev, Analysis of least-squares finite element methods for the Navier-Stokes equations, SIAM, J. Numer. Anal., 34 (1997), pp. 1817-1844.
[2] P. B. Bochev and M. D. Gunzburger, Analysis of least-squares finite element methods for the Stokes equations, Math. Comp., 63 (1994), pp 479-506.
[3] P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares type, SIAM Rev., 40 (1998), pp 789-837.
[4] P. B. Bochev, Z. Cai, T. A. Manteuffel and S. F. McCormick, Analysis of velocity-flux first-order system least-squares principles for the Navier- Stokes equations: Part I, SIAM J. Numer. Anal., 35 (1998), pp. 990-1009.
[5] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 1994.
[6] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.
[7] Z. Cai, T. Manteuffel, and S. McCormick, First-order system least squares for velocity-vorticity-pressure form of the Stokes equations, with application to linear elasticity, ETNA, 3 (1995), pp. 150-159.
[8] Z. Cai, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for the Stokes equations, with application to linear elasticity, SIAM J. Numer. Anal., 34 (1997), pp. 1727-1741.
[9] C. L. Chang, An error estimate of the least squares finite element method for the Stokes problem in three dimensions, Math. Comp., 63 (1994), pp. 41-50.
[10] C. L. Chang and B.-N. Jiang, An error analysis of least-squares finite element method of velocity-pressure-vorticity formulation for Stokes problem, Comput. Methods Appl. Mech. Engrg., 84 (1990), pp. 247-255.
[11] C. L. Chang and J. J. Nelson, Least-squares finite element method for the Stokes problem with zero residual of mass conservation, SIAM J. Numer. Anal., 34 (1997), pp. 480-489.
[12] C. L. Chang, S.-Y. Yang, and C.-H. Hsu, A least-squares finite element method for incompressible flow in stress-velocity-pressure version, Comput. Methods Appl. Mech. Engrg., 128 (1995), pp. 1-9.
[13] C. L. Chang and S.-Y. Yang, Analysis of the L2 least-squares finite element method for the velocity-vorticity-pressure Stokes equations with velocity boundary conditions, Appl. Math. Comput., 130 (2002), pp. 121-144.
[14] J. M. Deang and M. D. Gunzburger, Issues related to least-squares finite element methods for the Stokes equations, 20 (1998), pp. 878-906.
[15] H.-Y. Duan and G.-P. Liang, On the velocity-pressure-vorticity least- squares mixed finite element method for the 3D Stokes equations, SIAM J. Numer. Anal., 41 (2003), pp. 2114-2130.
[16] M. Feistauer, Mathematical Methods in Fluid Dynamics, Longman Group UK Limited, 1993.
[17] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, New York, 1986.
[18] B.-N. Jiang, The Least-Squares Finite Element Method, Springer-Verlag, Berlin, 1998.
[19] S. D. Kim, Y. H. Lee, and S.-Y. Yang, Analysis of [H(-1), L2, L2] first-order system least squares for the incompressible Oseen type equations, to appear in Appl. Numer. Math.
[20] C.-C. Tsai and S.-Y. Yang, On the velocity-vorticity-pressure least- squares finite element method for the stationary incompressible Oseen problem, submitted for publication, 2004.
[21] S.-Y. Yang, Error analysis of a weighted least-squares finite element method for 2-D incompressible flows in velocity-stress-pressure formulation, Math. Meth. Appl. Sci., 21 (1998), pp. 1637-1654.
|