|
中文文獻 1.曾憲雄, 蔡秀滿, 蘇東興, 曾秋蓉, 王慶堯. (2005). 資料探勘 (Data Mining). 台北:旗標出版股份有限公司.
英文文獻 1.Berry, M. J., & Linoff, G. (1997). Data mining techniques: for marketing, sales, and customer support. John Wiley & Sons, Inc. 2.Cendrowska, J. (1987). PRISM: An algorithm for inducing modular rules. International Journal of Man-Machine Studies, 27(4), pp 349-370. 3.Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of data mining (adaptive computation and machine learning) pp. 361-452. Cambridge, MA: MIT press. 4.Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), pp 27-34. 5.Quinlan, J. R. (1979). Discovering rules by induction from large collections of examples. Expert systems in the micro electronics age. 6.Shannon, C. E. (1949). Communication theory of secrecy systems. Bell Labs Technical Journal, 28(4), pp 656-715. 7.Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases: An overview. AI magazine, 13(3), pp 57.
網路文獻 1.科技網. "資料倉儲":https://www.digitimes.com.tw/tw/資料倉儲 (2019/4/13) 2.維基百科. "線上分析模型":https://zh.wikipedia.org/wiki/線上分析處理 (2019/4/13) 3.Microsoft. "線上分析模型"https://support.office.com/zh-tw/olap (2019/4/13) 4.MBA智庫. "品質管理":https://zh.wikipedia.org/wiki/品質管理(2019/4/13) 5.MBA智庫. "不良率管制圖":https://wiki.mbalib.com/zh-tw/不良率管制圖 (2019/4/13) 6.每日頭條. "精密零件":https://kknews.cc/zh-tw/tech/eo5p9aq.html (2019/4/13)
|