跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施建宇
研究生(外文):Jian-Yu Shr
論文名稱:蜂巢狀製冰盤純、海水結冰速率研究
論文名稱(外文):Frozen rate of distilled and sea water on an Ice-making honeycomb tray
指導教授:廖世平廖世平引用關係
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:78
中文關鍵詞:冰塊海水結冰製冰機
外文關鍵詞:ice cubesea waterfreezingice-maker machine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
一般小噸位的漁船並無配備冷凍裝置,於出海時皆須預先儲備大量的冰塊;如果在冰塊溶化後才補到漁獲,便需回到港區補充冰塊,否則漁獲的鮮度可能大打折扣,同時也可能喪失了良好的捕魚先機。此外,如果漁船本身沒有冷凍機,常需儲備大量的冰塊,無形中增加不少船的載重量,多耗費的燃油亦相當可觀。另外,由於海水的冰點比一般淡水低,如海水的鹽度成分愈高,其冰點愈低,導致製冰的時間加長,並耗費許多的能源。
本研究主要可分為兩個階段來進行,首先為量測製冰時的冰點,以不同比例的蒸餾水和海水混合,實驗量測溫度變化曲線,再以所作各種不同狀況下之海水實際結冰測試,計算其個別所需的時間以及所耗的能量。其次以數值分析,採用FLUENT軟體,模擬製冰盤之結冰狀況及速率。結果顯示:使用蒸餾水製冰所需的時間最短,同時保存的時間也較長;海水冰雖然較不符合能源效益,但在海上取得容易且海水魚如用海水冰冷藏,鮮度較佳,故調製一比一的混合水,期望兼具蒸餾水、海水之優點。期藉此研究,供未來海水製冰機的設計參考。
關鍵字:冰塊、海水、結冰、製冰機
目錄
中文摘要..........................................................i
英文摘要.........................................................ii
目錄.............................................................iii
表目錄............................................................v
圖目錄...........................................................vi
符號說明........................................................ix
第一章 緒論.......................................................1
1-1 前言.....................................................1
1-2 文獻回顧................................................1
1-3 研究目的................................................4
第二章 實驗量測..................................................5
2-1 混合海水結冰點實驗分析 ..........................5
2-2 實驗設備.........................................8
2-3 實驗步驟........................................10
2-4 結果與討論......................................14
第三章 理論分析................................................17
3-1 FLUENT 基本架構與簡介................................17
3-2 物理模型...............................................17
3-3 基本假設...............................................18
3-4 參數設定...............................................18
3-5 統御方程式............................................20
3-6 交錯式網格點系統....................................21
3-7 數值求解..............................................22
第四章 結果與討論.............................................26
4-1 數值模型測試.........................................26
4-2 數值與實驗結果之比較................................26
第五章 結論與展望 ............................................61
5-1 結論 ..................................................61
5-2 展望 ..................................................61
參考文獻 ...............................................63
附錄 ...................................................65
參考文獻
1.Foster, A. M., Barrett, R., James, S.J. and Swain, M.J., “Measurement and Prediction of Air Movement Through Doorways in Refrigerated Rooms,” International Journal of Refrigeration, Vol. 25, pp. 1102-1109 (2002).
2.Campanone, L. A., Giner, S. A. and Mascheroni, R. H., “Generalized Model for the Simulation of Food Refrigeration. Development and Validation of the Predictive Numerical Method,” International Journal of Refrigeration, Vol. 25, pp. 975-984 (2002).
3.Huan, Z., He, S. and Ma, Y., “Numerical Simulation and Analysis for Quick-Frozen Food Processing,” Journal of Food Engineering, Vol. 60, pp. 267-273 (2003).
4.Hossain, M. M., Cleland, D. J. and Cleland, A. C., “Prediction of Freezing and Thawing Time for Foods of Regular Multi-Dimensional Shape by Using an Analytically Derived Geometric Factor”, International Journal of Refrigeration, Vol. 15, pp. 227-234 (1992).
5.Hossain, M. M., Cleland, D. J. and Cleland, A. C., “Prediction of Freezing and Thawing Time for Foods of Two-Dimensional irregular Shape by Using a Semi-Analytical Geometric Factor”, International Journal of Refrigeration, Vol. 15, pp. 235-240 (1992).
6.Tocci, A. M. and Mascheroni, R. H., “Freezing Times of Meat Balls in Belt Freezers: Experimental Determination and Prediction by Different Methods,” International Journal of Refrigeration, Vol. 17, pp. 445-452 (1994).
7.Ismail, K.A.R, Henriquez, J.R. and Silva, T.M., "A parametric study on ice formation inside a spherical capsule", International Journal of Thermal Sciences. Vol. 42, pp. 881-887 (2003).
8.Wang, D.C. and Wu, J.Y., "Influence of intermittent heat source on adsorption ice maker using waste heat", Energy Conversion and Management, Vol. 46, pp. 985-998 (2005).
9.Whitman W C.,W M. Johnson,REFRIGERATION & AIR CONDITIONING TECHNOLOGY ,Delmar Publishers, New York, 1995.
10.Chatenever R,AIR ,CONDITIONING AND REFRIGERATION FOR THE PROFESSIONAL, J Wiley & Sons , New York,1988.
11.Scanlon T. J.and Stickland M. T., A Numerical Analysis of Buoyancy-Driven Melting and Freezing, Int. J. Heat Mass Tranfer, vol. 47, pp. 429–436, 2004.
12.Gill, A E. (1982) Atmosphere-Ocean Dynamics, Academic Press, New York, Appendix A3, pp599-603.
13.Patankar, S. V., "Numerical Heat Transfer and Fluid Flow,"
McGraw-Hill, New York.
14.Hinze, J. O., "Turbulence," McGraw-Hill Publishing Co., New York,1975.
15.Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flow," Int. J. Heat Mass Transfer, Vol.15, pp. 1787-1806, 1972.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top