|
[1] H. C. Séran and P. Fergeaua, “An optimized low-frequency three-axis search coil magnetometer for space research,” Rev. Sci. Instrum., vol. 76, no. 4, pp. 044502-1–044502-10, Apr. 2005. [2] J. D. Ramboz, “Machinable Rogowski coil, design, and calibration,” IEEE Trans. Instrum. Meas., vol. 45, no. 2, pp. 511–515, Apr. 1996. [3] R. Want, “The magic of RFID,” Queue, vol. 2, no. 7, pp. 41–48, Oct. 2004. [4] X. Zhang, K. Ugurbil, and W. Chen, “Microstrip RF surface coil design for extremely high-field MRI and spectroscopy,” Magnet. Reson. Med., vol. 46, no. 3, pp. 443–450, Aug. 2001. [5] J. Olivo, S. Carrara, and G. D. Micheli, “Energy harvesting and remote powering for implantable biosensors,” IEEE Sensors J., vol. 11, no. 7, pp. 1573–1586, Jul. 2011. [6] S. He, F. Chen, Q. Yang, K. Liu, C. Shan, H. Bian, H. Liu, X. Meng, J. Si, Y. Zhao, and X. Hou, “Facile fabrication of true three-dimensional microcoils inside fused silica by a femtosecond laser,” J. Micromech. Microeng., vol. 22, no. 10, pp. 105017-1–105017-5, Aug. 2012. [7] F. Herrault, S. Yorish, T. M. Crittenden, C. H. Ji, and M. G. Allen, “Parylene-insulated ultradense microfabricated coils,” J. Microelectromech. Syst., vol. 19, no. 6, pp. 1277–1283, Dec. 2010. [8] E. J. Smith, D. Makarov, S. Sanchez, V. M. Fomin, and O. G. Schmidt, “Magnetic microhelix coil structures,” Phys. Rev. Lett., vol. 107, no. 9, pp. 097204-1–097204-4, Aug. 2011. [9] Q. Xue, C. Bian, J. Tong, J. Sun, H. Zhang, S. Xia, “Fabrication of a 3D interdigitated double-coil microelectrode chip by MEMS technique,” Microchim. Acta, vol. 177, no. 3–4, pp. 491–496, Jun. 2012. [10] L. J. Kricka, “Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century,” Clin. Chim. Acta, vol. 307, no. 1–2, pp. 219–223, May 2001. [11] G. Medoro, N. Manaresi, A. Leonardi, L. Altomare, M. Tartagni, and R. Guerrieri, “A lab-on-a-chip for cell detection and manipulation,” IEEE Sensors J., vol. 3, no. 3, pp. 317–325, Jun. 2003. [12] P. J. Hung, P. J. Lee, P. Sabounchi, N. Aghdam, R. Lin, and L. P. Lee, “A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array,” Lab Chip, vol. 5, no. 1, pp. 44–48, Jan. 2005. [13] A. Tourovskaia, X. Figueroa-Masot, and A. Folch, “Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies,” Lab Chip, vol. 5, no. 1, pp. 14–19, Jan. 2005. [14] G. M. Walker, M. S. Ozers, and D. J. Beebe, “Insect cell culture in microfluidic channels,” Biomed. Microdevices, vol. 4, no. 3, pp. 161–166, Jul. 2002. [15] J. W. Huang, “Design and fabrication of a magnetic microplatform for cell patterning and growth controlling application,” MA thesis, National Chiao Tung Univ., 2007. [16] S. S. Je and J. Chae, “A compact, low-power, and electromagnetically actuated microspeaker for hearing aids,” IEEE Electron Device Lett., vol. 29, no. 8, pp. 856–858, Aug. 2008. [17] J. J. Neumann and K. J. Gabriel, “CMOS-MEMS membrane for audio-frequency acoustic actuation,” Sensor Actuat. A: Phys., vol. 95, no. 2–3, pp. 175–182, Jan. 2002. [18] S. H. Yi and E. S. Kim, “Piezoelectric microspeaker with compressive nitride diaphragm,” in Proc. IEEE MEMS, Las Vegas, NV, USA, Jan. 2002, pp. 260–263. [19] J. Rehder, P. Rombach, and O. Hansen, “Balanced membrane micromachined loudspeaker for hearing instrument application,” J. Micromech. Microeng., vol. 11, no. 4, pp. 334–338, Jul. 2001. [20] M. C. Cheng, W. S. Huang, and R. S. Huang, “A silicon microspeaker for hearing instruments,” J. Micromech. Microeng., vol. 14, no. 7, pp. 859–866, Jul. 2004. [21] F. L. Ayatollahi and B. Y. Majlis, “Materials design and analysis of low-power MEMS microspeaker using magnetic actuation technology,” Adv. Mater. Res., vol. 74, pp. 243–246, Jun. 2009. [22] W. Kim, G. W. Jang, and Y. Y. Kim, “Microspeaker diaphragm optimization for widening the operating frequency band and increasing sound pressure level,” IEEE Trans. Magn., vol. 46, no. 1, pp. 59–66, Jan. 2010. [23] Y. W. Huang, T. Y. Chao, C. C. Chen, and Y. T. Cheng, “Power consumption reduction scheme of magnetic microactuation using electroplated Cu–Ni nanocomposite,” Appl. Phys. Lett., vol. 90, no. 24, pp. 244105-1–244105-3, Jun. 2007. [24] E. A. Arens, D. Auslander, D. Culler, C. Federspiel, C. Huizenga, J. Rabaey, P. Wright, and D. White. (2005, Nov.). Demand Response Enabling Technology Development, Phase I Report. Center Built Environment, UC Berkeley, Berkeley [Online]. Available: http://www.escholarship.org/uc/item/0971h43j [25] P. Ripka, “Electric current sensor: a review,” Meas. Sci. Technol., vol. 21, no. 11, pp. 112001-1–112001-23, Sep. 2010. [26] S. Ziegler, R. C. Woodward, H. H. Iu, and L. J. Borle, “Current sensing techniques: a review,” IEEE Sensors J., vol. 9, no. 4, pp. 354–376, Apr. 2009. [27] C. Xiao, “An overview of integratable current sensor technologies,” in Proc. 38th IEEE Annu. Meet. Ind. Appl., vol. 2. Salt Lake City, UT, Oct. 2003, pp. 1251–1258. [28] D. A. Ward and J. L. T. Exon, “Using Rogowski coils for transient current measurements,” Eng. Sci. Educ. J., vol. 2, no. 3, pp. 105–113, Jun. 1993. [29] W. F. Ray and C. R. Hewson, “High performance Rogowski current transducers,” in Proc. IEEE Ind. Appl. Soc. Annu. Meeting, Rome, Italy, Oct. 2000, vol. 5, pp. 3083–3090. [30] T. Waeckerlé, H. Fraisse, Q. Furnemont, and F. Bloch, “Upgrade Fe- 50%Ni alloys for open-loop DC current sensor: design and alloypotential characteristics,” J. Magn. Magn. Mater., vol. 304, no. 2, pp. e850–e852, Sep. 2006. [31] H. G. Kim, G. B. Kang, and D. J. Nam, “Coreless hall current sensor for automotive inverters decoupling cross-coupled field,” J. Power Electron., vol. 9, no. 1, pp. 68–73, Jan. 2009. [32] O. Zorlu, P. Kejik, and W. Teppan, “A closed core microfluxgate sensor with cascaded planar FeNi rings,” Sensor. Actuat. A-Phys., vol. 162, pp. 241–247, Aug. 2010. [33] E. S. Leland, P. K. Wright, and R. M. White, “Design of a MEMS passive, proximity-based AC electric current sensor for residential and commercial loads,” in Proc. PowerMEMS, Freiburg, Germany, Nov. 2007, pp. 77–80. [34] E. S. Leland, R. M. White, and P. K. Wright, “Design and fabrication of a MEMS AC electric current sensor,” in Proc. CIMTEC, Acireale, Sicily, Italy, Jun. 2008. [35] A. S. Edelstein, G. A. Fischer, M. Pedersen, E. R. Nowak, S. F. Cheng, and C. A. Nordman, “Progress toward a thousandfold reduction in 1/f noise in magnetic sensors using an AC microelectromechanical system flux concentrator,” J. Appl. Phys., vol. 99, no. 8, pp. 08B317-1–08B317-6, Apr. 2006. [36] M. Feychting, U. Forssen, L. E. Rutqvist, A. and Ahlbom, “Magnetic fields and breast cancer in Swedish adults residing near high-voltage power lines,” Epidemiology, vol. 9, no. 4, pp. 392–397, Jul. 1998. [37] G. Draper, T. Vincent, M. E. Kroll, J. Swanson, “Childhood cancer in relation to distance from high voltage power lines in England and Wales: a case-control study,” Br. Med. J., vol. 330, pp. 1290–1294, Jun. 2005. [38] G. Katsir, S. C. Baram, A. H. Parola, “Effect of sinusoidally varying magnetic fields on cell proliferation and adenosine deaminase specific activity,” Bioelectromagnetics, vol. 19, no. 1, pp. 46–52, Jun. 1998. [39] J. A. Heredia-Rojas, A. O. Rodríguez-De la Fuente, M. del Roble Velazco-Campos, C. H. Leal-Garza, L. E. Rodríguez-Flores, and B. de la Fuente-Cortez, “Cytological effects of 60 Hz magnetic fields on human lymphocytes in vitro: sister-chromatid exchanges, cell kinetics and mitotic rate,” Bioelectromagnetics, vol. 22, no. 3, pp. 145–149, Apr. 2001. [40] A. M. Khalil and W. Qassem, “Cytogenetic effects of pulsing electromagnetic field on human lymphocytes in vitro: chromosome aberrations, sister-chromatid exchanges and cell kinetics,” Mutat. Res., vol. 247, no. 1, pp. 141–146, Mar. 1991. [41] S. Kwee and P. Raskmark, “Changes in cell proliferation due to environmental non-ionizing radiation: 1. ELF electromagnetic fields,” Bioelectrochem. Bioenerg., vol. 36, no. 2, pp. 109–114, Mar. 1995. [42] F. I. Wolf, A. Torsello, B. Tedesco, S. Fasanella, A. Boninsegna, M. D.’Ascenzo, C. Grassi, G. B. Azzena, A. and Cittadini, “50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism,” Biochim. Biophys. Acta, vol. 1743, no. 1–2, pp. 120–129, Mar. 2005. [43] M. Buemi, D. Marino, G. Di Pasquale, F. Floccari, M. Senatore, C. Aloisi, F. Grasso, G. Mondio, P. Perillo, N. Frisina, and F. Corica, “Cell proliferation/cell death balance in renal cell cultures after exposure to a static magnetic field,” Nephron, vol. 87, no. 3, pp. 269–273, Mar. 2001. [44] L. Huang, L. Dong, Y. Chen, H. Qi, and D. Xiao, “Effects of sinusoidal magnetic field observed on cell proliferation, ion concentration, and osmolarity in two human cancer cell lines,” Electromagn. Biol. Med., vol. 25, no. 2, pp. 113–126, 2006. [45] A. Bayrashev, W. P. Robbins, B. and Ziaie, “Low frequency wireless powering of microsystems using piezoelectric–magnetostrictive laminate composites,” Sensor Actuat. A: Phys., vol. 114, no. 2–3, pp. 244–249, Sep. 2004. [46] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83–86, Jul. 2007. [47] R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger, and F. Solzbacher, “A low-power integrated circuit for a wireless 100-electrode neural recording system,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 123–133, Jan. 2007. [48] P. J. Hung, P. J. Lee, P. Sabounchi, N. Aghdam, R. Lin, and L. P. Lee, “A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array,” Lab Chip, vol. 5, no. 1, pp. 44–48, Jan. 2005. [49] A. Tourovskaia, X. Figueroa-Masot, and A. Folch, “Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies,” Lab Chip, vol. 5, no. 1, pp. 14–19, Jan. 2005. [50] G. M. Walker, M. S. Ozers, and D. J. Beebe, “Insect cell culture in microfluidic channels,” Biomed. Microdevices, vol. 4, no. 3, pp. 161–166, Jul. 2002. [51] G. Tsurita, S. Ueno, N. H. Tsuno, H. Nagawa, and T. Muto, “Effects of exposure to repetitive pulsed magnetic stimulation on cell proliferation and expression of heat shock protein 70 in normal and malignant cells,” Biophys. Res. Commun., vol. 261, no. 3, pp. 689–694, Aug. 1999. [52] C. F. Blackman, J. P. Blanchard, S. G. Benane, and D. E. House, “Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells,” Bioelectromagnetics, vol. 15, no. 3, pp. 239–260, 1994. [53] J. Ando, N. I. Smith, K. Fujita, and S. Kawata, “Photogeneration of membrane potential hyperpolarization and depolarization in non-excitable cells,” Eur. Biophys. J., vol. 38, no. 2, pp. 255–262, Feb. 2009. [54] M. Jia, L. Minxu, X. W. Liu, H. Jiang, P. G. Nelson, and G. Guroff, “Voltage-sensitive calcium currents are acutely increased by nerve growth factor in PC12 cells,” J. Neurophysiol., vol. 82, no. 6, pp. 2847–2852, Dec. 1999. [55] N. M. Ibrahim and W. B. Kuhn, “An approach for the calculation of magnetic field within square spiral inductors at low frequency,” Int. J. Numer. Modelling, vol. 15, no. 4, pp. 339–354, Jul./Aug. 2002. [56] D. J. Panagopoulos, A. Karabarbounis, and L. H. Margaritis, “Mechanism for action of electromagnetic fields on cells,” Biochem. Biophys. Res. Commun., vol. 298, no. 1, pp. 95–102, Oct. 2002. [57] J. F. Rohan, G. O’Riordan, and J. Boardman, “Selective electroless nickel deposition on copper as a final barrier/bonding layer material for microelectronics applications,” Appl. Surf. Sci., vol. 185, no. 3–4, pp. 289–297, Jan. 2002. [58] G. E. Loeb, M. J. Bak, M. Salcman, and E. M. Schmidt, “Parylene as a chronically stable, reproducible microelectrode insulator,” IEEE Trans. Biomed. Eng., vol. 24, no. 2, pp. 121–128, Mar. 1977. [59] T. Y. Chang, V. G. Yadav, S. De Leo, A. Mohedas, B. Rajalingam, C. L. Chen, S. Selvarasah, M. R. Dokmeci, and A. Khademhosseini, “Cell and protein compatibility of parylene-C surfaces,” Langmuir, vol. 23, no. 23, pp. 11718–11725, Nov. 2007. [60] P. F. Baker, A. L. Hodgkin, and T. I. Shaw, “The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons,” J. Physiol., vol. 164, no. 2, pp. 355–374, Nov. 1962. [61] A. Chiabrera, B. Bianco, E. Moggia, and T. Tommasi, “Interaction mechanism between electromagnetic fields and ion adsorption: endogenous forces and collision frequency,” Bioelectrochem. Bioenerg., vol. 35, no. 1–2, pp. 33–37, Nov. 1994. [62] S. Chuppa, Y. S. Tsai, S. Yoon, S. Shackleford, C. Rozales, R. Bhat, G. Tsay, C. Matanguihan, K. Konstantinov, and D. Naveh, “Fermentor temperature as a tool for control of high-density perfusion cultures of mammalian cells,” Biotechnol. Bioeng., vol. 55, no. 2, pp. 328–338, Jul. 1997. [63] S. Mazza, L. F. Battaglia, M. W. Miller M W, W. C. Dewey, M. J. Edwards, and J. S. Abramowicz, “The ΔT thermal dose concept 2: in vitro cellular effects,” J. Therm. Biol., vol. 29, no. 3, pp. 151–156, Apr. 2004. [64] P. N. Rao and J. Engelberg, “HeLa cells: effects of temperature on the life cycle,” Science, vol. 148, no. 3673, pp. 1092–1094, May 1965. [65] S. Kochkin, “MarkeTrak VIII: 25-Year trends in the hearing health market,” Hear. Rev., vol. 16, no. 11, pp. 12–31, Oct. 2009. [66] S. Kochkin, “MarkeTrak VIII: Consumer satisfaction with hearing aids is slowly increasing,” Hear. J., vol. 63, no. 1, pp. 19–32, Jan. 2010. [67] Y. T. Kuo, T. J. Lin, Y. T. Li, and C. W. Liu, “Design and implementation of low-power ANSI S1.11 filter bank for digital hearing aids,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 7, pp. 1684–1696, Jul. 2010. [68] M. A. Harradine, T. S. Birch, J. C. Stevens, and C. Shearwood, “A micro-machined loudspeaker for the hearing impaired,” in Proc. IEEE Transducers, Chicage, USA, Jun. 1997, pp. 429–432. [69] D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989 [70] S. M. Rossnagel, T. S. Kuan, “Alteration of Cu conductivity in the size effect regime,” J. Vac. Sci. Technol. B, vol. 22, no. 1, pp. 240–247, Jan. 2004. [71] P. C. Lewis, E. Kumacheva, M. Allard, and E. H. Sargent, “Colloidal crystallization accomplished by electrodeposition on patterned substrates,” J. Dispersion Sci. Technol., vol. 26, no. 3, pp. 259–265, 2005. [72] Y. Wang, X. Xu, Z. Tian, Y. Zong, H. Cheng, and C. Lin, “Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution,” Chem. Eur. J., vol. 12, no. 9, pp. 2542–2549, Mar. 2006. [73] Y. Hou, H. Kondoh, T. Ohta, and S. Gao, “Size-controlled synthesis of nickel nanoparticles,” Appl. Surf. Sci., vol. 241, no. 1–2, pp. 218–222, Feb. 2005. [74] K. Peng, L. Zhou, A. Hu, Y. Tang, and D Li, “Synthesis and magnetic properties of Ni–SiO2 nanocomposites,” Mater. Chem. Phys., vol. 111, no. 1, pp. 34–37, Sep. 2008. [75] S. E. Apsel, J. W. Emmert, J. Deng, and L. A. Bloomfield, “Surface-enhanced magnetism in nickel clusters,” Phys. Rev. Lett., vol. 76, no, 9, pp. 1441–1444, Feb. 1996. [76] M. Gad-el-Hak, MEMS Applications, 2nd ed., Taylor &; Francis Group, 2006. [77] Y. C. Chen, W. T. Liu, T. Y. Chao, and Y. T. Cheng, “An optimized Cu-Ni nanocomposite coil for low-power electromagnetic microspeaker fabrication,” in Proc. IEEE Transducers, Denver, CO, USA, Jun. 2009, pp. 25–28. [78] W. Y. Zhang, J. P. Labukas, S. Tatic-Lucic, L. Larson, T. Bannuru, R. P. Vinci, and G. S. Ferguson, “Novel room-temperature first-level packaging process for microscale devices,” Sensor Actuat. A: Phys., vol. 123–124, pp. 646–654, Apr. 2005. [79] A. Battaglini, J. Lilliestam, A. Haas, and A. Patt, “Development of supersmart grids for a more efficient utilisation of electricity from renewable sources,” J. Clean Prod., vol. 17, pp. 911–918, Jul. 2009. [80] A. Radun, “An alternative low-cost current-sensing scheme for high-current power electronics circuits,” IEEE Trans. Ind. Electron., vol. 42, no. 1, pp. 78–84, Feb. 1995. [81] M. Rigoni, J. S. D. Garcia, A. P. Garcia, P. A. Da Silva, N. J. Batistela, and P. Kuo-Peng, “Rogowski coil current meters,” IEEE Potentials, vol. 27, no. 4, pp. 40–45, Jul./Aug. 2008. [82] F. Costa, E. Laboure, F. Forest, and C. Gautier, “Wide bandwidth, large AC current probe for power electronics and EMI measurements,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 502–511, Aug. 1997. [83] T. M. Liakopoulos and C. H. Ahn, “A micro-fluxgate magnetic sensor using micromachined planar solenoid coils,” Sensor Actuat. A: Phys., vol. 77, no. 1, pp. 66–72, Sep. 1999. [84] L. Rovati and S. Cattini, “Zero-field readout electronics for planar fluxgate sensors without compensation coil,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 571–578, Jan. 2012. [85] N. A. Stutzke, S. E. Russek, D. P. Pappas, and M. Tondra, “Low-frequency noise measurements on commercial magnetoresistive magnetic field sensors,” J. Appl. Phys., vol. 97, no. 10, pp. 10Q107-1–10Q107-3, May 2005. [86] V. Frick, L. Hébrard, P. Poure, F. Anstotz, and F. Braun, “CMOS microsystem for AC current measurement with galvanic isolation,” IEEE Sensors J., vol. 3, no. 6, pp. 752–760, Dec. 2003. [87] E. S. Leland, P. K. Wright, and R. M. White, “A MEMS AC current sensor for residential and commercial electricity end-use monitoring,” J. Micromech. Microeng., vol. 19, no. 9, pp. 094018-1–094018-6, Aug. 2009. [88] E. S. Leland, C. T. Sherman, P. Minor, R. M. White, and P. K. Wright, “A new MEMS sensor for AC electric current,” in Proc. IEEE Sensors, Waikoloa, HI, Nov. 2010, pp. 1177–1182. [89] G. Wijeweera, B. Bahreyni, C. Shafai, A. Rajapakse, and D. R. Swatek, “Micromachined electric-field sensor to measure AC and DC Fields in power systems,” IEEE Trans. Power Del., vol. 24, no. 3, pp. 988–995, Jul. 2009. [90] C. Li and X. Cui, “An optical voltage and current sensor with electrically switchable quarter waveplate,” Sensor Actuat. A: Phys., vol. 126, no. 1, pp. 62–67, Jan. 2006. [91] A. Rowe, M. Berges, and R. Rajkumar, “Contactless sensing of appliance state transitions through variations in electromagnetic fields,” in Proc. ACM BuildSys., Zurich, Switzerland, Nov. 2010, pp. 19–24. [92] M. A. Noras, “Solid state electric field sensor,” in Proc. ESA Annual Meeting on Electrostatics, Cleveland, OH, Jun. 2011. [93] T. Kubo, T. Furukawa, H. Fukumoto, and M. Ohchi, “Numerical estimation of characteristics of voltage–current sensor of resin molded type for 22kV power distribution systems,” in Proc. ICROS-SICE, Fukuoka, Saga, Japan, Aug. 2009, pp. 5050–5054. [94] Y. C. Chen, W. H. Hsu, S. H. Cheng, and Y.T. Cheng, “A flexible, non-intrusive power sensor tag for the electricity monitoring of two-wire household appliances,” in Proc. IEEE MEMS, Paris, France, Jan.–Feb. 2012, pp. 620–623. [95] S. Tumanski, “Induction coil sensors – a review,” Meas. Sci. Technol., vol. 18, no. 3, pp. R31–R46, Jan. 2007. [96] T. Y. Chao and Y. T. Cheng, “Wafer-level chip scale flexible wireless microsystem fabrication,” in Proc. IEEE MEMS, Cancun, Mexico, Jan. 2011, pp. 344–347. [97] C. W. P. Shi, X. Shan, G. Tarapata, R. Jachhowicz, C. W. Lu, and H. T. Hui, “Fabrication of wireless sensor platform on transparent flexible film using screen printing and via interconnect,” in Proc. DTIP, Seville, Spain, May 2010, pp. 209–214. [98] D. Numakura, “Advanced Screen Printing “Practical approaches for printable &; flexible electronics”,” in Proc. IMPACT, Taipei, Taiwan, Oct. 2008, pp. 205–208. [99] G. Y. Tian, Z. X. Zhao, and R. W. Baines, “The research of inhomogeneity in eddy current sensors,” Sensor. Actuat. A-Phys., vol. 69, no. 2, pp. 148–151, Aug. 1998. [100] X. Chen and T. Ding, “Flexible eddy current sensor array for proximity sensing,” Sensor. Actuat. A-Phys., vol. 135, pp. 126–130, Mar. 2007. [101] A. M. Pernia, J. M. Lopera, M. J. Prieto, and F. Nuno, and S. Ollero, “Characteristics and design of a current sensor using multilayer Co/Ni structures,” in Proc. APEC, Anaheim, CA, USA, Feb. 1998, vol. 1, pp. 414–419. [102] C. A. Schulz, S. Duchesne, D. Roger, and J. Vincent, “Short circuit current measurements between transformer sheets,” IEEE Trans. Magn., vol. 46, no. 2, pp. 536–539, Feb. 2010. [103] Y. C. Chen, S. C. Yu, S. H. Cheng, and Y. T. Cheng, “A flexible inductive coil tag for household two-wire current sensing applications,” IEEE Sensors J., vol. 12, no. 6, pp. 2129–2134, Jun. 2012. [104] V. Leus and D. Elata, “Fringing field effect in electrostatic actuators,” Technion—Israel Inst. Technol., Haifa, Israel, Tech. Rep. ETR 2004-2, 2004. [105] F. S. Shieu, C. F. Chen, J. G. Sheen, and Z. C. Chang, “Intermetallic phase formation and shear strength of a Au-In microjoint,” Thin Solid Films, vol. 346, no. 1-2, pp. 125–129, Jun. 1999. [106] Texas Instruments, FilterProTM, http://www.ti.com/tool/filterpro [107] I. A. Metwally, “Self-integrating rogowski coil for high-impulse current measurement,” IEEE Trans. Instrum. Meas., vol. 59, no. 2, pp. 353–360, Feb. 2010. [108] J. Li and S. M. R. Hasan, “Design and performance analysis of a 866-MHz low-power optimized CMOS LNA for UHF RFID,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp.1840–1849, May 2013. [109] G. Q. Wu, D. H. Xu, B. Xiong, and Y. L. Wang, “A micromachined square extensional mode resonant magnetometer with directly voltage output,” in Proc. IEEE MEMS, Taipei, Taiwan, Jan. 2013, pp. 633–636. [110] G. Y. Chen, T. Lee, R. Ismaeel, G. Brambilla, and T. P. Newson, “Resonantly enhanced faraday rotation in an microcoil current sensor,” IEEE Photonics Technol. Lett., vol. 24, no. 10, pp. 860–862, May 2012. [111] Y. Ouyang, J. He, J. Hu, and S. X. Wang, “A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications,” Sensors, vol. 12, no. 11, pp. 15520–15541, Nov. 2012. [112] F. E. Rasmussen, J. T. Ravnkilde, P. T. Tang, O. Hansen, and S. Bouwstra, “Electroplating and characterization of cobalt–nickel–iron and nickel–iron for magnetic microsystems applications,” Sensor. Actuat. A-Phys., vol. 92, no. 1–3, pp. 242–248, Aug. 2001.
|