跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.132) 您好!臺灣時間:2025/11/29 22:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳永昌
研究生(外文):Chen, Yung-Chang
論文名稱:微型螺旋感應線圈之開發,以於細胞培養、低功耗電磁致動與家用電器電力感測之應用
論文名稱(外文):Design and Fabrication of Microspiral Inductive Coils for the Applications in Cell Culturing, Low Power Electromagnetic Actuation and Electricity Monitoring of Household Appliances
指導教授:鄭裕庭
指導教授(外文):Cheng, Yu-Ting
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:117
中文關鍵詞:感應線圈電磁致動微型揚聲器電力感測微機電
外文關鍵詞:Inductive CoilElectromagnetic ActuationMicrospeakerElectricity MonitoringMEMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的迅速發展,微型化是近幾十年來的主要趨勢,由於CMOS製程技術持續不斷更新與縮小尺寸,具備無線通訊能力與自然環境條件或生理信號即時監測等多樣化功能的智慧型手持裝置已成為我們未來生活中最便利的工具。相較於CMOS製程技術,微機電系統(MEMS)技術藉由一個微型三維結構來提供多元化的感測及致動機制,已被認可為用來開發下一世代普及的傳感器關鍵技術之一。這項技術已被廣泛應用在電子、機械、光學、聲學、化學和生醫等系統,例如在汽車工業與消費電子產業裡著名的MEMS壓力感測器,慣性感測器和麥克風等等。而現今,感應線圈的應用在我們的生活周遭無處不在,舉凡電廠和變電站裡大至好幾層樓高的變壓器,或是在小至消費型電子元件中的CMOS晶片上的射頻微型螺旋電感等皆有其蹤影。故本論文的目的,旨在展現和延伸微型線圈在生物科技,聲學和電力監控等微系統的應用,用以改善我們的生活。在本論文中,首先發展出一項微型磁場平台技術,配合其實驗結果,可用來快速研究和分析局域化極低頻(ELF)電磁場(EMF)對活體細胞的生物效應。此具備生物相容性的微型平台,係利用玻璃上的感應線圈陣列在微觀尺度下產生局域化極低頻電磁場,透過實驗可觀察到局域化極低頻電磁場對活體細胞的鄰近效應。細胞在60 Hz的磁場暴露下進行培養,其線圈產生的磁場強度設計,製造和運作為1.2±0.1 mT。經過72小時的極低頻電磁場暴露,HeLa(人類子宮頸癌)細胞和PC-12(大鼠嗜鉻細胞瘤)細胞各自表現出約18.4%和12.9%的細胞增殖率減少。此外根據所提出的動態模型,這些細胞增殖的變化,可以歸因於細胞中的訊號轉導過程被磁場感應產生之切向電流所造成的影響。
另外,本論文也針對低功耗電磁式微型揚聲器的製作,提出了一種功率最佳化的銅鎳奈米複合線圈,藉著在奈米複合材料合成之電阻率及導磁率中取得平衡以達到低功耗的目的。在相同的微型揚聲器設計下,添加2克/升奈米鎳粉末的無氰鹼銅電鍍液中所製備之線寬200 μm的複合線圈與無添加之純銅電鍍液下所製備之線圈相比,在揚聲器1至6 kHz的工作頻率範圍內可以節省約40%的功率。此外,聚二甲基矽氧烷(PDMS)薄膜也被利用來製作低功耗毫瓦級電磁式喇叭。在1.76 mW的功率輸入下,一個直徑3.5 mm厚度3.3 µm的振膜可以在2 c.c.的空間內產生頻率1 kHz、聲壓級106分貝的聲音。
在本論文的最後一個部分,提出了一個應用於家用電器雙線式電線電流感測之軟性感應線圈標籤。標籤的製作採用相容於CMOS製程的可撓式SU-8技術,提供了低成本、可靠與普及性高等獨一無二的元件特性。在面積0.5 x 1 mm2內的30匝線圈設計下,此線圈標籤可以對50和60 Hz的輸入電流安培數提供分別約18 μV/ A和21 μV/ A的靈敏度。此外,透過整合電壓感測器的部分,本論文提出了一個具備良好貼附效果並可準確偵測配備標準雙芯電線之家用電器功率的軟性非侵入式功率感測器標籤。在面積0.5x1 mm2內,將50匝線圈之電流感測器和由兩個電容式電極組成的電壓感測器同時製作在100 μm厚的軟性聚對苯二甲酸乙二酯(PET)基板上作為一個感測器標籤。此標籤連接一個主動式低通濾波器電路,可對各自對60 Hz電流和電壓感測提供271.6 mV/A和0.38 mV/V的靈敏度。同時,本論文也藉由提出一個補償電路設計,透過導入電壓感測器訊號至電流感測器中,來解決電流感測器中來自電源線的電壓負載造成之電場耦合干擾,使此電流感測器在量測1 A,60 Hz電流的電力線上可以達到超過40 dB的訊噪比。
另外,本論文也提出一個用來增強此檢測家用雙線式電力線電流之軟性感應線圈標籤靈敏度的設計。實驗結果證明,藉由導入一個磁性C字型夾鉗條紋設計,可以引導和集中感應線圈中心區域的磁通量,得到一個較大的感應電動勢。對一個30匝的感應線圈設計,結合長14.5 mm與貼附於線圈上有約20 μm高的2 µm厚之鎳和鎳鐵C字型夾鉗條紋,在量測1 A,60 Hz電流的SPT-2 16AWG電源線上可分別得到15.5%和37.2%的靈敏度提升。
最後,我們相信本論文所提出之微型線圈設計和製作方法,加上其理論分析模型,在生物系統中的磁場對細胞培養的影響研究、聲學系統的低功率電磁致動,以及家用電器的電力感測上具有極大的應用潛力。
With the rapid evolution of science and technology, miniaturization is the major development trend in recent decades. As the CMOS technology continues scaling, smart hand-held devices combined with the capabilities of wireless communication and varieties of sensing functions for real-time monitoring of the natural environment conditions or physiological signals become the most convenient and powerful tool in our future life. Instead of CMOS technology, micro-electro-mechanical systems (MEMS) technology has been recognized one of the key technologies for developing pervasive transducers by realizing a microscale 3D structure to provide various sensing and actuating functionalities in next generation. It has been widely applied in electrical, mechanical, optical, acoustic, chemical, biomedical system,…etc., such as the well-known MEMS pressure sensors, inertial sensors and microphones in the automotive and consumer electronic industry. Nowadays, inductive coils have been applied everywhere in our environment, like the transformer with several floors high at the power plant and the substation, and small on-chip spiral inductors inside the CMOS chips in consumer electronics. The objectives of this dissertation are aimed to demonstrate and extend the microcoil applications in biotechnology, acoustic and electricity monitoring systems for the improvement of our life. In this dissertation, a platform technology with experimental results has been developed and utilized to rapidly investigate and analyze the biological effects of localized extremely low frequency (ELF) electromagnetic field (EMF) on living cells. The proximity effect of the localized ELF-EMF on living cells is revealed using the bio-compatible microplatform on which an on-glass inductive coil array, the source of the localized ELF-EMF in micro scale, is designed, fabricated and operated with a field strength of 1.2 ± 0.1 mT at 60 Hz for cell culturing study. After a 72 h ELF-EMF exposure, HeLa (human cervical cancer) and PC-12 (rat pheochromocytoma) cells exhibit about 18.4% and 12.9% cell proliferation rate reduction, respectively. Furthermore, according to the presented dynamic model, the reduction of the proliferation can be attributed to the interference of signal transduction processes due to the tangential currents induced around the cells.
In addition, this dissertation also presents an optimized Cu-Ni nanocomposite coil synthesized based on the trade-off of resistivity and permeability of the nanocomposite for low-power electromagnetic microspeaker fabrication. A 200μm wide composite coil plated in an alkaline noncyanide copper based bath that is added with 2g/L of Ni nanopowders can realize ~40% power saving of the speaker performed in a frequency range of 1 to 6kHz as compared with the coil made of pure Cu for the same speaker design. In addition, a PDMS membrane is employed for the low-power milliwatt electromagnetic microspeaker fabrication. For a 1.76 mW power input, the speaker with a 3.5 mm in diameter and 3.3 µm thick membrane can generate a sound with the sound pressure level (SPL) of 106 dB @1 kHz in a 2 c.c. coupler.
In the last part of this dissertation, a flexible inductive coil tag is presented to sense the electric current in the two-wire power cords of household goods. The tag is fabricated using a CMOS compatible SU-8 flexible technology which provides unique device characteristics of low-cost, reliable, and pervasive. With a 30-turns coil design in an area of 0.5 x 1 cm2, the coil tag can provide a sensitivity of 18 µV/A and 21 µV/A for detecting 50 and 60 Hz electric current in the ampere regime, respectively. Moreover, by integrating with the voltage sensor part, a flexible non-intrusive power sensor tag with good proximity is presented for accurate power detection of the household appliances using typical zip-cord power lines. Both current and voltage sensors with the design of a 50-turns inductive coil and two capacitive electrodes, respectively, in an area of 1.3 x 1 cm2 are fabricated on a 100 μm-thick flexible PET substrate as a sensor tag. The tag exhibits a sensitivity of 271.6 mV/A and 0.38 mV/V via active low-pass filter circuits for the current and voltage detection. Meanwhile, a compensation circuit inputted with the signals of voltage sensor signals is proposed for the interference reduction of in the current sensor that will be electrically coupled from the power cord, so that the current sensor can achieve over 40dB signal-to-noise ratio for measuring the loaded current of 1A, 60Hz on the power line. Furthermore, a sensitivity enhancement scheme is presented for the flexible inductive coil tag used for the current detection of household two-wire power lines. Experimental results show that the inductive coil tag can exhibit a larger induced voltage by the introduction of the magnetic C-clamp stripes that can guide and concentrate the magnetic flux in the center area of the inductive coil. For a 30-turns inductive coil, the incorporation of a 2 μm thick Ni and NiFe C-clamp stripes with 14.5 mm in length and ~20μm in height onto the coil can provide 15.5% and 37.2% sensitivity enhancement, respectively, for detecting 1 A, 60 Hz electric current flow in a SPT-2 16AWG power line.
At final, it’s our belief that the proposed coil designs and fabrication processes combined with the theoretical modeling have great potential for the applications of magnetic field investigation of cell culturing in biological system, low power electromagnetic actuation in acoustic system, and electricity monitoring of household appliances.
Chinese Abstract ........................ i
English Abstract ........................ iii
Acknowledgement ......................... vii
Table of Contents ....................... viii
List of Tables .......................... xi
List of Figures ......................... xii

Chapter 1 Introduction
1.1 Overview ........................... 1
1.2 Organization of the Dissertation ... 6

Chapter 2 Design and Fabrication of a Microplatform Using On-Chip Planar Inductors for the Proximity Effect Study of Localized ELF-EMF on the Growth of in vitro HeLa and PC-12 Cells
2.1 Introduction .......................... 11
2.2 Theory of Biological Effects by ELF-EMF Exposure
.......................................... 12
2.2.1 Time-Variant MF Effect ........ 13
2.2.2 Induced EF Effect .............. 15
2.3 Design and Fabrication of the Platform ... 17
2.3.1 Localized ELF-EMF Platform Design. 17
2.3.2 Thermal Analysis .............. 22
2.3.3 Preparation of Cell Culture ... 23
2.4 Results and Discussion ................ 24
2.5 Conclusion ............................ 27

Chapter 3 Low Power Electromagnetic Driven Microspeaker for Hearing Aid Applications
3.1 Introduction .......................... 36
3.2 An Optimized Cu-Ni Nanocomposite Coil ... 40
3.2.1 Characterization of the Nanocomposite
Coil .......................... 40
3.2.2 Results and Discussion ........ 43
3.3 PDMS Membrane for Low Power Microspeaker
Fabrication ........................... 43
3.3.1 Low Power Microspeaker Design and
Fabrication ................... 43
3.3.2 Results and Discussion ........ 45
3.4 Conclusion ............................ 47

Chapter 4 Power Sensor Tag for the Electricity Monitoring
of Two-Wire Household Appliances
4.1 Introduction .......................... 58
4.2 A Flexible, Non-Intrusive Current Sensor Tag
.......................................... 63
4.2.1 Design and Fabrication of the Current
Sensor Tag on a Flexible SU-8
Substrate......................... 63
4.2.2 Results and Discussion ........ 66
4.3 A Power Sensor Tag with Interference Reduction
for Electricity Monitoring of Two-Wire Household
Appliances ............................ 69
4.3.1 Design and Fabrication of the Power
Sensor on a Flexible PET Substrate
.................................. 69
4.3.1.1 Operational Principle of
Current Sensor ........ 70
4.3.1.2 Operational Principle of
Voltage Sensor ........ 71
4.3.1.3 Device Fabrication .... 73
4.3.2 Results and Discussion .......... 74
4.3.2.1 Device Characterization
........................ 74
4.3.2.2 Interference Reduction for the
Current Measurement of Loaded
Household Appliances ... 76
4.4 Sensitivity Enhancement of the Current Sensor Tag
.......................................... 78
4.4.1 Design of the Magnetic C-Clamp Stripes
.................................. 78
4.4.2 Fabrication of the Magnetic C-Clamp
Stripes ........................ 79
4.4.3 Results and Discussion ......... 80
4.5 Conclusion ............................ 82

Chapter 5 Conclusion
5.1 Introduction ......................... 100

Reference ..................... 102
Curriculum Vitae .............. 114
Publication List .............. 115
[1] H. C. Séran and P. Fergeaua, “An optimized low-frequency three-axis search coil magnetometer for space research,” Rev. Sci. Instrum., vol. 76, no. 4, pp. 044502-1–044502-10, Apr. 2005.
[2] J. D. Ramboz, “Machinable Rogowski coil, design, and calibration,” IEEE Trans. Instrum. Meas., vol. 45, no. 2, pp. 511–515, Apr. 1996.
[3] R. Want, “The magic of RFID,” Queue, vol. 2, no. 7, pp. 41–48, Oct. 2004.
[4] X. Zhang, K. Ugurbil, and W. Chen, “Microstrip RF surface coil design for extremely high-field MRI and spectroscopy,” Magnet. Reson. Med., vol. 46, no. 3, pp. 443–450, Aug. 2001.
[5] J. Olivo, S. Carrara, and G. D. Micheli, “Energy harvesting and remote powering for implantable biosensors,” IEEE Sensors J., vol. 11, no. 7, pp. 1573–1586, Jul. 2011.
[6] S. He, F. Chen, Q. Yang, K. Liu, C. Shan, H. Bian, H. Liu, X. Meng, J. Si, Y. Zhao, and X. Hou, “Facile fabrication of true three-dimensional microcoils inside fused silica by a femtosecond laser,” J. Micromech. Microeng., vol. 22, no. 10, pp. 105017-1–105017-5, Aug. 2012.
[7] F. Herrault, S. Yorish, T. M. Crittenden, C. H. Ji, and M. G. Allen, “Parylene-insulated ultradense microfabricated coils,” J. Microelectromech. Syst., vol. 19, no. 6, pp. 1277–1283, Dec. 2010.
[8] E. J. Smith, D. Makarov, S. Sanchez, V. M. Fomin, and O. G. Schmidt, “Magnetic microhelix coil structures,” Phys. Rev. Lett., vol. 107, no. 9, pp. 097204-1–097204-4, Aug. 2011.
[9] Q. Xue, C. Bian, J. Tong, J. Sun, H. Zhang, S. Xia, “Fabrication of a 3D interdigitated double-coil microelectrode chip by MEMS technique,” Microchim. Acta, vol. 177, no. 3–4, pp. 491–496, Jun. 2012.
[10] L. J. Kricka, “Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century,” Clin. Chim. Acta, vol. 307, no. 1–2, pp. 219–223, May 2001.
[11] G. Medoro, N. Manaresi, A. Leonardi, L. Altomare, M. Tartagni, and R. Guerrieri, “A lab-on-a-chip for cell detection and manipulation,” IEEE Sensors J., vol. 3, no. 3, pp. 317–325, Jun. 2003.
[12] P. J. Hung, P. J. Lee, P. Sabounchi, N. Aghdam, R. Lin, and L. P. Lee, “A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array,” Lab Chip, vol. 5, no. 1, pp. 44–48, Jan. 2005.
[13] A. Tourovskaia, X. Figueroa-Masot, and A. Folch, “Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies,” Lab Chip, vol. 5, no. 1, pp. 14–19, Jan. 2005.
[14] G. M. Walker, M. S. Ozers, and D. J. Beebe, “Insect cell culture in microfluidic channels,” Biomed. Microdevices, vol. 4, no. 3, pp. 161–166, Jul. 2002.
[15] J. W. Huang, “Design and fabrication of a magnetic microplatform for cell patterning and growth controlling application,” MA thesis, National Chiao Tung Univ., 2007.
[16] S. S. Je and J. Chae, “A compact, low-power, and electromagnetically actuated microspeaker for hearing aids,” IEEE Electron Device Lett., vol. 29, no. 8, pp. 856–858, Aug. 2008.
[17] J. J. Neumann and K. J. Gabriel, “CMOS-MEMS membrane for audio-frequency acoustic actuation,” Sensor Actuat. A: Phys., vol. 95, no. 2–3, pp. 175–182, Jan. 2002.
[18] S. H. Yi and E. S. Kim, “Piezoelectric microspeaker with compressive nitride diaphragm,” in Proc. IEEE MEMS, Las Vegas, NV, USA, Jan. 2002, pp. 260–263.
[19] J. Rehder, P. Rombach, and O. Hansen, “Balanced membrane micromachined loudspeaker for hearing instrument application,” J. Micromech. Microeng., vol. 11, no. 4, pp. 334–338, Jul. 2001.
[20] M. C. Cheng, W. S. Huang, and R. S. Huang, “A silicon microspeaker for hearing instruments,” J. Micromech. Microeng., vol. 14, no. 7, pp. 859–866, Jul. 2004.
[21] F. L. Ayatollahi and B. Y. Majlis, “Materials design and analysis of low-power MEMS microspeaker using magnetic actuation technology,” Adv. Mater. Res., vol. 74, pp. 243–246, Jun. 2009.
[22] W. Kim, G. W. Jang, and Y. Y. Kim, “Microspeaker diaphragm optimization for widening the operating frequency band and increasing sound pressure level,” IEEE Trans. Magn., vol. 46, no. 1, pp. 59–66, Jan. 2010.
[23] Y. W. Huang, T. Y. Chao, C. C. Chen, and Y. T. Cheng, “Power consumption reduction scheme of magnetic microactuation using electroplated Cu–Ni nanocomposite,” Appl. Phys. Lett., vol. 90, no. 24, pp. 244105-1–244105-3, Jun. 2007.
[24] E. A. Arens, D. Auslander, D. Culler, C. Federspiel, C. Huizenga, J. Rabaey, P. Wright, and D. White. (2005, Nov.). Demand Response Enabling Technology Development, Phase I Report. Center Built Environment, UC Berkeley, Berkeley [Online]. Available: http://www.escholarship.org/uc/item/0971h43j
[25] P. Ripka, “Electric current sensor: a review,” Meas. Sci. Technol., vol. 21, no. 11, pp. 112001-1–112001-23, Sep. 2010.
[26] S. Ziegler, R. C. Woodward, H. H. Iu, and L. J. Borle, “Current sensing techniques: a review,” IEEE Sensors J., vol. 9, no. 4, pp. 354–376, Apr. 2009.
[27] C. Xiao, “An overview of integratable current sensor technologies,” in Proc. 38th IEEE Annu. Meet. Ind. Appl., vol. 2. Salt Lake City, UT, Oct. 2003, pp. 1251–1258.
[28] D. A. Ward and J. L. T. Exon, “Using Rogowski coils for transient current measurements,” Eng. Sci. Educ. J., vol. 2, no. 3, pp. 105–113, Jun. 1993.
[29] W. F. Ray and C. R. Hewson, “High performance Rogowski current transducers,” in Proc. IEEE Ind. Appl. Soc. Annu. Meeting, Rome, Italy, Oct. 2000, vol. 5, pp. 3083–3090.
[30] T. Waeckerlé, H. Fraisse, Q. Furnemont, and F. Bloch, “Upgrade Fe- 50%Ni alloys for open-loop DC current sensor: design and alloypotential characteristics,” J. Magn. Magn. Mater., vol. 304, no. 2, pp. e850–e852, Sep. 2006.
[31] H. G. Kim, G. B. Kang, and D. J. Nam, “Coreless hall current sensor for automotive inverters decoupling cross-coupled field,” J. Power Electron., vol. 9, no. 1, pp. 68–73, Jan. 2009.
[32] O. Zorlu, P. Kejik, and W. Teppan, “A closed core microfluxgate sensor with cascaded planar FeNi rings,” Sensor. Actuat. A-Phys., vol. 162, pp. 241–247, Aug. 2010.
[33] E. S. Leland, P. K. Wright, and R. M. White, “Design of a MEMS passive, proximity-based AC electric current sensor for residential and commercial loads,” in Proc. PowerMEMS, Freiburg, Germany, Nov. 2007, pp. 77–80.
[34] E. S. Leland, R. M. White, and P. K. Wright, “Design and fabrication of a MEMS AC electric current sensor,” in Proc. CIMTEC, Acireale, Sicily, Italy, Jun. 2008.
[35] A. S. Edelstein, G. A. Fischer, M. Pedersen, E. R. Nowak, S. F. Cheng, and C. A. Nordman, “Progress toward a thousandfold reduction in 1/f noise in magnetic sensors using an AC microelectromechanical system flux concentrator,” J. Appl. Phys., vol. 99, no. 8, pp. 08B317-1–08B317-6, Apr. 2006.
[36] M. Feychting, U. Forssen, L. E. Rutqvist, A. and Ahlbom, “Magnetic fields and breast cancer in Swedish adults residing near high-voltage power lines,” Epidemiology, vol. 9, no. 4, pp. 392–397, Jul. 1998.
[37] G. Draper, T. Vincent, M. E. Kroll, J. Swanson, “Childhood cancer in relation to distance from high voltage power lines in England and Wales: a case-control study,” Br. Med. J., vol. 330, pp. 1290–1294, Jun. 2005.
[38] G. Katsir, S. C. Baram, A. H. Parola, “Effect of sinusoidally varying magnetic fields on cell proliferation and adenosine deaminase specific activity,” Bioelectromagnetics, vol. 19, no. 1, pp. 46–52, Jun. 1998.
[39] J. A. Heredia-Rojas, A. O. Rodríguez-De la Fuente, M. del Roble Velazco-Campos, C. H. Leal-Garza, L. E. Rodríguez-Flores, and B. de la Fuente-Cortez, “Cytological effects of 60 Hz magnetic fields on human lymphocytes in vitro: sister-chromatid exchanges, cell kinetics and mitotic rate,” Bioelectromagnetics, vol. 22, no. 3, pp. 145–149, Apr. 2001.
[40] A. M. Khalil and W. Qassem, “Cytogenetic effects of pulsing electromagnetic field on human lymphocytes in vitro: chromosome aberrations, sister-chromatid exchanges and cell kinetics,” Mutat. Res., vol. 247, no. 1, pp. 141–146, Mar. 1991.
[41] S. Kwee and P. Raskmark, “Changes in cell proliferation due to environmental non-ionizing radiation: 1. ELF electromagnetic fields,” Bioelectrochem. Bioenerg., vol. 36, no. 2, pp. 109–114, Mar. 1995.
[42] F. I. Wolf, A. Torsello, B. Tedesco, S. Fasanella, A. Boninsegna, M. D.’Ascenzo, C. Grassi, G. B. Azzena, A. and Cittadini, “50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism,” Biochim. Biophys. Acta, vol. 1743, no. 1–2, pp. 120–129, Mar. 2005.
[43] M. Buemi, D. Marino, G. Di Pasquale, F. Floccari, M. Senatore, C. Aloisi, F. Grasso, G. Mondio, P. Perillo, N. Frisina, and F. Corica, “Cell proliferation/cell death balance in renal cell cultures after exposure to a static magnetic field,” Nephron, vol. 87, no. 3, pp. 269–273, Mar. 2001.
[44] L. Huang, L. Dong, Y. Chen, H. Qi, and D. Xiao, “Effects of sinusoidal magnetic field observed on cell proliferation, ion concentration, and osmolarity in two human cancer cell lines,” Electromagn. Biol. Med., vol. 25, no. 2, pp. 113–126, 2006.
[45] A. Bayrashev, W. P. Robbins, B. and Ziaie, “Low frequency wireless powering of microsystems using piezoelectric–magnetostrictive laminate composites,” Sensor Actuat. A: Phys., vol. 114, no. 2–3, pp. 244–249, Sep. 2004.
[46] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83–86, Jul. 2007.
[47] R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger, and F. Solzbacher, “A low-power integrated circuit for a wireless 100-electrode neural recording system,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 123–133, Jan. 2007.
[48] P. J. Hung, P. J. Lee, P. Sabounchi, N. Aghdam, R. Lin, and L. P. Lee, “A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array,” Lab Chip, vol. 5, no. 1, pp. 44–48, Jan. 2005.
[49] A. Tourovskaia, X. Figueroa-Masot, and A. Folch, “Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies,” Lab Chip, vol. 5, no. 1, pp. 14–19, Jan. 2005.
[50] G. M. Walker, M. S. Ozers, and D. J. Beebe, “Insect cell culture in microfluidic channels,” Biomed. Microdevices, vol. 4, no. 3, pp. 161–166, Jul. 2002.
[51] G. Tsurita, S. Ueno, N. H. Tsuno, H. Nagawa, and T. Muto, “Effects of exposure to repetitive pulsed magnetic stimulation on cell proliferation and expression of heat shock protein 70 in normal and malignant cells,” Biophys. Res. Commun., vol. 261, no. 3, pp. 689–694, Aug. 1999.
[52] C. F. Blackman, J. P. Blanchard, S. G. Benane, and D. E. House, “Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells,” Bioelectromagnetics, vol. 15, no. 3, pp. 239–260, 1994.
[53] J. Ando, N. I. Smith, K. Fujita, and S. Kawata, “Photogeneration of membrane potential hyperpolarization and depolarization in non-excitable cells,” Eur. Biophys. J., vol. 38, no. 2, pp. 255–262, Feb. 2009.
[54] M. Jia, L. Minxu, X. W. Liu, H. Jiang, P. G. Nelson, and G. Guroff, “Voltage-sensitive calcium currents are acutely increased by nerve growth factor in PC12 cells,” J. Neurophysiol., vol. 82, no. 6, pp. 2847–2852, Dec. 1999.
[55] N. M. Ibrahim and W. B. Kuhn, “An approach for the calculation of magnetic field within square spiral inductors at low frequency,” Int. J. Numer. Modelling, vol. 15, no. 4, pp. 339–354, Jul./Aug. 2002.
[56] D. J. Panagopoulos, A. Karabarbounis, and L. H. Margaritis, “Mechanism for action of electromagnetic fields on cells,” Biochem. Biophys. Res. Commun., vol. 298, no. 1, pp. 95–102, Oct. 2002.
[57] J. F. Rohan, G. O’Riordan, and J. Boardman, “Selective electroless nickel deposition on copper as a final barrier/bonding layer material for microelectronics applications,” Appl. Surf. Sci., vol. 185, no. 3–4, pp. 289–297, Jan. 2002.
[58] G. E. Loeb, M. J. Bak, M. Salcman, and E. M. Schmidt, “Parylene as a chronically stable, reproducible microelectrode insulator,” IEEE Trans. Biomed. Eng., vol. 24, no. 2, pp. 121–128, Mar. 1977.
[59] T. Y. Chang, V. G. Yadav, S. De Leo, A. Mohedas, B. Rajalingam, C. L. Chen, S. Selvarasah, M. R. Dokmeci, and A. Khademhosseini, “Cell and protein compatibility of parylene-C surfaces,” Langmuir, vol. 23, no. 23, pp. 11718–11725, Nov. 2007.
[60] P. F. Baker, A. L. Hodgkin, and T. I. Shaw, “The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons,” J. Physiol., vol. 164, no. 2, pp. 355–374, Nov. 1962.
[61] A. Chiabrera, B. Bianco, E. Moggia, and T. Tommasi, “Interaction mechanism between electromagnetic fields and ion adsorption: endogenous forces and collision frequency,” Bioelectrochem. Bioenerg., vol. 35, no. 1–2, pp. 33–37, Nov. 1994.
[62] S. Chuppa, Y. S. Tsai, S. Yoon, S. Shackleford, C. Rozales, R. Bhat, G. Tsay, C. Matanguihan, K. Konstantinov, and D. Naveh, “Fermentor temperature as a tool for control of high-density perfusion cultures of mammalian cells,” Biotechnol. Bioeng., vol. 55, no. 2, pp. 328–338, Jul. 1997.
[63] S. Mazza, L. F. Battaglia, M. W. Miller M W, W. C. Dewey, M. J. Edwards, and J. S. Abramowicz, “The ΔT thermal dose concept 2: in vitro cellular effects,” J. Therm. Biol., vol. 29, no. 3, pp. 151–156, Apr. 2004.
[64] P. N. Rao and J. Engelberg, “HeLa cells: effects of temperature on the life cycle,” Science, vol. 148, no. 3673, pp. 1092–1094, May 1965.
[65] S. Kochkin, “MarkeTrak VIII: 25-Year trends in the hearing health market,” Hear. Rev., vol. 16, no. 11, pp. 12–31, Oct. 2009.
[66] S. Kochkin, “MarkeTrak VIII: Consumer satisfaction with hearing aids is slowly increasing,” Hear. J., vol. 63, no. 1, pp. 19–32, Jan. 2010.
[67] Y. T. Kuo, T. J. Lin, Y. T. Li, and C. W. Liu, “Design and implementation of low-power ANSI S1.11 filter bank for digital hearing aids,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 7, pp. 1684–1696, Jul. 2010.
[68] M. A. Harradine, T. S. Birch, J. C. Stevens, and C. Shearwood, “A micro-machined loudspeaker for the hearing impaired,” in Proc. IEEE Transducers, Chicage, USA, Jun. 1997, pp. 429–432.
[69] D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989
[70] S. M. Rossnagel, T. S. Kuan, “Alteration of Cu conductivity in the size effect regime,” J. Vac. Sci. Technol. B, vol. 22, no. 1, pp. 240–247, Jan. 2004.
[71] P. C. Lewis, E. Kumacheva, M. Allard, and E. H. Sargent, “Colloidal crystallization accomplished by electrodeposition on patterned substrates,” J. Dispersion Sci. Technol., vol. 26, no. 3, pp. 259–265, 2005.
[72] Y. Wang, X. Xu, Z. Tian, Y. Zong, H. Cheng, and C. Lin, “Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution,” Chem. Eur. J., vol. 12, no. 9, pp. 2542–2549, Mar. 2006.
[73] Y. Hou, H. Kondoh, T. Ohta, and S. Gao, “Size-controlled synthesis of nickel nanoparticles,” Appl. Surf. Sci., vol. 241, no. 1–2, pp. 218–222, Feb. 2005.
[74] K. Peng, L. Zhou, A. Hu, Y. Tang, and D Li, “Synthesis and magnetic properties of Ni–SiO2 nanocomposites,” Mater. Chem. Phys., vol. 111, no. 1, pp. 34–37, Sep. 2008.
[75] S. E. Apsel, J. W. Emmert, J. Deng, and L. A. Bloomfield, “Surface-enhanced magnetism in nickel clusters,” Phys. Rev. Lett., vol. 76, no, 9, pp. 1441–1444, Feb. 1996.
[76] M. Gad-el-Hak, MEMS Applications, 2nd ed., Taylor &; Francis Group, 2006.
[77] Y. C. Chen, W. T. Liu, T. Y. Chao, and Y. T. Cheng, “An optimized Cu-Ni nanocomposite coil for low-power electromagnetic microspeaker fabrication,” in Proc. IEEE Transducers, Denver, CO, USA, Jun. 2009, pp. 25–28.
[78] W. Y. Zhang, J. P. Labukas, S. Tatic-Lucic, L. Larson, T. Bannuru, R. P. Vinci, and G. S. Ferguson, “Novel room-temperature first-level packaging process for microscale devices,” Sensor Actuat. A: Phys., vol. 123–124, pp. 646–654, Apr. 2005.
[79] A. Battaglini, J. Lilliestam, A. Haas, and A. Patt, “Development of supersmart grids for a more efficient utilisation of electricity from renewable sources,” J. Clean Prod., vol. 17, pp. 911–918, Jul. 2009.
[80] A. Radun, “An alternative low-cost current-sensing scheme for high-current power electronics circuits,” IEEE Trans. Ind. Electron., vol. 42, no. 1, pp. 78–84, Feb. 1995.
[81] M. Rigoni, J. S. D. Garcia, A. P. Garcia, P. A. Da Silva, N. J. Batistela, and P. Kuo-Peng, “Rogowski coil current meters,” IEEE Potentials, vol. 27, no. 4, pp. 40–45, Jul./Aug. 2008.
[82] F. Costa, E. Laboure, F. Forest, and C. Gautier, “Wide bandwidth, large AC current probe for power electronics and EMI measurements,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 502–511, Aug. 1997.
[83] T. M. Liakopoulos and C. H. Ahn, “A micro-fluxgate magnetic sensor using micromachined planar solenoid coils,” Sensor Actuat. A: Phys., vol. 77, no. 1, pp. 66–72, Sep. 1999.
[84] L. Rovati and S. Cattini, “Zero-field readout electronics for planar fluxgate sensors without compensation coil,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 571–578, Jan. 2012.
[85] N. A. Stutzke, S. E. Russek, D. P. Pappas, and M. Tondra, “Low-frequency noise measurements on commercial magnetoresistive magnetic field sensors,” J. Appl. Phys., vol. 97, no. 10, pp. 10Q107-1–10Q107-3, May 2005.
[86] V. Frick, L. Hébrard, P. Poure, F. Anstotz, and F. Braun, “CMOS microsystem for AC current measurement with galvanic isolation,” IEEE Sensors J., vol. 3, no. 6, pp. 752–760, Dec. 2003.
[87] E. S. Leland, P. K. Wright, and R. M. White, “A MEMS AC current sensor for residential and commercial electricity end-use monitoring,” J. Micromech. Microeng., vol. 19, no. 9, pp. 094018-1–094018-6, Aug. 2009.
[88] E. S. Leland, C. T. Sherman, P. Minor, R. M. White, and P. K. Wright, “A new MEMS sensor for AC electric current,” in Proc. IEEE Sensors, Waikoloa, HI, Nov. 2010, pp. 1177–1182.
[89] G. Wijeweera, B. Bahreyni, C. Shafai, A. Rajapakse, and D. R. Swatek, “Micromachined electric-field sensor to measure AC and DC Fields in power systems,” IEEE Trans. Power Del., vol. 24, no. 3, pp. 988–995, Jul. 2009.
[90] C. Li and X. Cui, “An optical voltage and current sensor with electrically switchable quarter waveplate,” Sensor Actuat. A: Phys., vol. 126, no. 1, pp. 62–67, Jan. 2006.
[91] A. Rowe, M. Berges, and R. Rajkumar, “Contactless sensing of appliance state transitions through variations in electromagnetic fields,” in Proc. ACM BuildSys., Zurich, Switzerland, Nov. 2010, pp. 19–24.
[92] M. A. Noras, “Solid state electric field sensor,” in Proc. ESA Annual Meeting on Electrostatics, Cleveland, OH, Jun. 2011.
[93] T. Kubo, T. Furukawa, H. Fukumoto, and M. Ohchi, “Numerical estimation of characteristics of voltage–current sensor of resin molded type for 22kV power distribution systems,” in Proc. ICROS-SICE, Fukuoka, Saga, Japan, Aug. 2009, pp. 5050–5054.
[94] Y. C. Chen, W. H. Hsu, S. H. Cheng, and Y.T. Cheng, “A flexible, non-intrusive power sensor tag for the electricity monitoring of two-wire household appliances,” in Proc. IEEE MEMS, Paris, France, Jan.–Feb. 2012, pp. 620–623.
[95] S. Tumanski, “Induction coil sensors – a review,” Meas. Sci. Technol., vol. 18, no. 3, pp. R31–R46, Jan. 2007.
[96] T. Y. Chao and Y. T. Cheng, “Wafer-level chip scale flexible wireless microsystem fabrication,” in Proc. IEEE MEMS, Cancun, Mexico, Jan. 2011, pp. 344–347.
[97] C. W. P. Shi, X. Shan, G. Tarapata, R. Jachhowicz, C. W. Lu, and H. T. Hui, “Fabrication of wireless sensor platform on transparent flexible film using screen printing and via interconnect,” in Proc. DTIP, Seville, Spain, May 2010, pp. 209–214.
[98] D. Numakura, “Advanced Screen Printing “Practical approaches for printable &; flexible electronics”,” in Proc. IMPACT, Taipei, Taiwan, Oct. 2008, pp. 205–208.
[99] G. Y. Tian, Z. X. Zhao, and R. W. Baines, “The research of inhomogeneity in eddy current sensors,” Sensor. Actuat. A-Phys., vol. 69, no. 2, pp. 148–151, Aug. 1998.
[100] X. Chen and T. Ding, “Flexible eddy current sensor array for proximity sensing,” Sensor. Actuat. A-Phys., vol. 135, pp. 126–130, Mar. 2007.
[101] A. M. Pernia, J. M. Lopera, M. J. Prieto, and F. Nuno, and S. Ollero, “Characteristics and design of a current sensor using multilayer Co/Ni structures,” in Proc. APEC, Anaheim, CA, USA, Feb. 1998, vol. 1, pp. 414–419.
[102] C. A. Schulz, S. Duchesne, D. Roger, and J. Vincent, “Short circuit current measurements between transformer sheets,” IEEE Trans. Magn., vol. 46, no. 2, pp. 536–539, Feb. 2010.
[103] Y. C. Chen, S. C. Yu, S. H. Cheng, and Y. T. Cheng, “A flexible inductive coil tag for household two-wire current sensing applications,” IEEE Sensors J., vol. 12, no. 6, pp. 2129–2134, Jun. 2012.
[104] V. Leus and D. Elata, “Fringing field effect in electrostatic actuators,” Technion—Israel Inst. Technol., Haifa, Israel, Tech. Rep. ETR 2004-2, 2004.
[105] F. S. Shieu, C. F. Chen, J. G. Sheen, and Z. C. Chang, “Intermetallic phase formation and shear strength of a Au-In microjoint,” Thin Solid Films, vol. 346, no. 1-2, pp. 125–129, Jun. 1999.
[106] Texas Instruments, FilterProTM, http://www.ti.com/tool/filterpro
[107] I. A. Metwally, “Self-integrating rogowski coil for high-impulse current measurement,” IEEE Trans. Instrum. Meas., vol. 59, no. 2, pp. 353–360, Feb. 2010.
[108] J. Li and S. M. R. Hasan, “Design and performance analysis of a 866-MHz low-power optimized CMOS LNA for UHF RFID,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp.1840–1849, May 2013.
[109] G. Q. Wu, D. H. Xu, B. Xiong, and Y. L. Wang, “A micromachined square extensional mode resonant magnetometer with directly voltage output,” in Proc. IEEE MEMS, Taipei, Taiwan, Jan. 2013, pp. 633–636.
[110] G. Y. Chen, T. Lee, R. Ismaeel, G. Brambilla, and T. P. Newson, “Resonantly enhanced faraday rotation in an microcoil current sensor,” IEEE Photonics Technol. Lett., vol. 24, no. 10, pp. 860–862, May 2012.
[111] Y. Ouyang, J. He, J. Hu, and S. X. Wang, “A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications,” Sensors, vol. 12, no. 11, pp. 15520–15541, Nov. 2012.
[112] F. E. Rasmussen, J. T. Ravnkilde, P. T. Tang, O. Hansen, and S. Bouwstra, “Electroplating and characterization of cobalt–nickel–iron and nickel–iron for magnetic microsystems applications,” Sensor. Actuat. A-Phys., vol. 92, no. 1–3, pp. 242–248, Aug. 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top