[1] 吳維彥,2006,『應用不定長度特徵之條件隨機域於口語不流暢語流修正模型』,台灣碩博士論文知識加值系統。[2] 連子建,2006,『結合混合型離散化和挑選式簡易貝氏特徵選取來改善簡易貝氏分類器正確率之方法』,台灣碩博士論文知識加值系統。
[3] 蘇建源,2007,『條件式隨機域之圖形處理於人類動作辨識之應用』台灣碩博士論文知識加值系統。[4] 張仁明,林達德,1999,『類神經網路與貝氏分類法應用於影像分割之比較研究』,農業機械學刊,第8卷,第3期,61-74頁。[5] 小小神經學網http://www.dls.ym.edu.tw
[6] Gonzalez, R. C. , and Woods, R. E., “Digital Image Processing(2 ed),” Prentice-Hall Inc., Englewood Cliffs, NJ, 2002.
[7] Akselrod-Ballin, A., Galun, M., Gomori, J. M., Valsasina, P., Basri, R., and Brandt, A., "Automatic Segmentation and Classification of Multiple Sclerosis in Multichannel MRI," IEEE Transactions on Biomedical Engineering, Vol. 56, 2009, pp. 2641-2469.
[8] Karimaghaloo, Z., Shah, M., Francis, S. J., Arnold, D. L., Collins, D. L., and Arbel, T., "Automatic Detection of Gadolinium-Enhancing Multiple Sclerosis Lesions in Brain MRI Using Conditional Random Fields," IEEE Transactions on Medical Imaging, Vol. 31, No. 6, June 2012, pp.1181-1194.
[9] Ge, Y., "Multiple Sclerosis: The Role of MR Imaging," AJNR Am J Neuroradiol, 2006, pp. 1165–1176.
[10] Karimaghaloo, Z., Shah, M., Francis, S. J., Arnold, D. L., Collins, D. L., and Arbel, T., "Detection of gad-enhancing lesions in multiple sclerosis Using Conditional Random Fields," Springer-Verlag Berlin Heidelberg, 2010, pp. 41-48.
[11] Khayati, R., Vafadust, M., Towhidkhah, F., and Nabavi, S. M., "Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model," Computers in Biology and Medicine, Vol. 38, 2008, pp. 379-390.
[12] García-Lorenzo, D., Prima, S., Morrissey, S., and Barillot, C., "A robust expectation-maximization algorithm for multiple sclerosis lesion segmentation," MICCAI Workshop: 3D Segmentation in the Clinic: A Grand Challenge II, MS lesion segmentation, 2008, pp. 1-9
[13] Shiee, N., Bazin, P., and Pham, D.L., "Multiple sclerosis lesion segmentation using statistical and topological atlases," in: Grand Challenge Workshop: multiple sclerosis lesion segmentation Challenge, 2008, pp. 1-10.
[14] Bricq, S., Collet, C., Armspach, J. P., "Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains," Medical Image Analysis, Vol. 12, 2008, pp. 639-652.
[15] Kroon, D., Oort, E., and Slump, K., "Multiple sclerosis detection in multispectral magnetic resonance images with principal components analysis," in: Grand Challenge Workshop: multiple sclerosis lesion segmentation Challenge, 2008, pp. 1-14.
[16] Datta, S., Sajja, B.R., He, R., Gupta, R. K., Wolinsky, J. S., and Narayana, P. A., "Segmentation of gadolinium-enhanced lesions on MRI in multiple sclerosis," Journal of Magnetic Resonance Imaging, Vol. 25, 2007, pp. 932-937.
[17] Saha, S., and Bandyopadhyay, S., "A new point symmetry based fuzzy genetic clustering technique for automatic evolution of clusters," Information Sciences, 2009, pp. 3230–3246.
[18] Sajja, B. R., Datta, S., He, R., Mehta, M., Gupta, R. K., Wolinsky, J. S., Narayana, P. A., "Unified approach for multiple sclerosis lesion segmentation on brain MRI," Annals of Biomedical Engineering. Vol. 34, 2006, pp. 142–151.
[19] Goldberg-Zimring, D., Achiron, A. Miron, S., Faibel, M., and Azhari, H., "Automated detection and characterization of multiple sclerosis lesions in bra in MR images," Magnetic Resonance Imaging, Vol. 16, No. 3, 1998, pp. 311–318.
[20] Wu, Y., Warfield, S. K., Tan, I. L., Wells, W., Meier, D., Schijndel, R., Barkhof, F., and Guttmann, C., "Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI," NeuroImage Vol. 32, 2006, pp. 1205–1215.
[21] Khayati P., Vafadust, M., Towhidkhah, F., and Nabavi, S. M., "A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images," Computerized Medical Imaging and Graphics, Vol. 32, 2008, pp. 124-133.
[22] Anbeek, P., Vincken, K. L., Osch, M., Bisschops, R., and Grond, J., "Probabilistic segmentat ion of white matter lesions in MR imaging," NeuroImage Vol. 21, 2004, pp. 1037–1044.
[23] Subbanna, N., Shah, M., Francis, S. J., Narayannan, S., Collins, D. L., Arnold, D. L., and Arbel, T., "MS lesion segmentation using Markov Random Fields," in: Workshop Medical Image Analysis Multiple sclerosis, 2009, pp. 15–26.
[24] Han, Jiawei, Kamber, Micheline, and Pei, Jian, Data Mining: Concepts and Techniques(2 ed), Morgan Kaufmann, 2005.
[25] Leemput, K. V., Maes, F., Vandermeulen D., Colchester, A., and Suetens, P., "Automated Segmentation of Multiple Sclerosis Lesions by Model Outlier Detection" IEEE Transactions on Medical Imaging, Vol. 20, No. 8, 2012, pp.677-688.