跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 03:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王美杰
研究生(外文):Mei Jie Wang
論文名稱:取得最小偏誤裂區設計的簡易法
論文名稱(外文):An Easy Method for Obtaining Minimum Aberration Split-Plot Designs
指導教授:王丕承王丕承引用關係
指導教授(外文):P. C. Wang
學位類別:碩士
校院名稱:長庚大學
系所名稱:工商管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:64
中文關鍵詞:裂區設計最小偏誤實驗徑直交表
外文關鍵詞:split-plot designsminimum aberrationexperimental runorthogonal arrays
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當有下面兩種情況之一時,我們會採用裂區設計來進行實驗;第一是:實驗中有些因子需要利用較大的實驗個體(experimental units),而其他因子利用較小的實驗個體時。第二是:有些實驗因子由於成本或時間等耗費因素,導致水準值難以變換。
而過去的研究中,多是利用搜尋法的方式來找到最小偏誤裂區設計,並將找到的結果記錄在表格中,以提供實驗者依照自身情況來選擇適當的設計。本研究則是希望可以提供一個簡單且快速的方法,讓實驗者可以迅速地找到符合需求的實驗,以節省實驗者的時間。所以本研究針對最常使用之16及32條實驗徑的裂區設計提供一個重排直交表及重排順序,並按照重排順序依序去指派實驗的因子,以取得最小偏誤部分因子裂區設計。

There are two possible scenarios for using split-plot designs. First, in some experiments, several factors must be applied in larger experimental units while other factors are applied in comparatively smaller experimental units. Second, when the levels of some factors are easy to change, while the alteration of levels of other factors are costly, or time- consuming.
The usefulness of such designs is obvious. To find good designs for split-plot experiments previous researchers created algorithm to search. As general fractional factorial design, researchers used minimum aberration rule to obtain good designs.
In this research, we created two sequences for assignment to obtain minimum aberration split-plot designs: one for 16 runs and the other for 32 runs. Assigning factors to these sequences with some rules, we can easily obtain minimum aberration split-plot designs.

目錄:
長庚大學博碩士論文著作授權書 -iii-
誌謝 -iv-
中 文 摘 要 -v-
Abstract -vi-
目 錄 -vii-
表 目 錄 -viii-
第一章 緒 論 - 1 -
第二章 文 獻 探 討 - 8 -
2.1 部分因子設計 - 10 -
2.1.1 衍生設計法 - 12 -
2.1.2 直交設計法 - 13 -
2.2 偏誤準則 - 15 -
2.3 裂區設計 - 16 -
2.4 Wang (2010)法 - 17 -
2.5 高雨夢(2011)法 - 19 -
2.5.1 2^((n_1+n_2)-(0+1))設計 - 19 -
2.5.2 實驗徑為8的最小偏誤裂區設計 - 20 -
2.5.3 實驗徑為16的最小偏誤裂區設計 - 21 -
2.5.4 實驗徑為32的最小偏誤裂區設計 - 23 -
第三章 最小偏誤部分因子裂區設計 - 26 -
3.1 實驗徑16的最小偏誤部分因子裂區設計 - 27 -
3.2 實驗徑32的最小偏誤部分因子裂區設計 - 36 -
第四章 結 論 - 50 -
參 考 文 獻 - 52 -

表目錄:
表2- 1 26-2部分因子設計(加增因子為D、F) - 13 -
表2- 2 直交表OA8(27) - 14 -
表3- 1 OA16(215)重排直交表 - 27 -
表3- 2 6~8個因子且實驗徑16的裂區設計 - 29 -
表3- 3 9~11個因子且實驗徑16的裂區設計 - 30 -
表3- 4 12~15個因子且實驗徑16的裂區設計 - 31 -
表3- 5 6~8個因子且實驗徑16之裂區設計的字長類型 - 34 -
表3- 6 9~11個因子且實驗徑16之裂區設計的字長類型 - 35 -
表3- 7 12~15個因子且實驗徑16之裂區設計的字長類型 - 36 -
表3- 8 OA32(221)重排直交表 - 38 -
表3- 9 7~9個因子且實驗徑32的裂區設計 - 41 -
表3- 10 10~12個因子且實驗徑32的裂區設計 - 42 -
表3- 11 13~15個因子且實驗徑32的裂區設計 - 43 -
表3- 12 7~9個因子且實驗徑32之裂區設計的字長類型 - 45 -
表3- 13 10~12個因子且實驗徑32之裂區設計的字長類型 - 46 -
表3- 14 13~15個因子且實驗徑32之裂區設計的字長類型 - 47 -
表3- 15 10個因子且實驗徑32的裂區設計 - 49 -
表3- 16 10個因子且實驗徑32之裂區設計的字長類型 - 49 -
高雨夢 (2011),〈裂區實驗的最小偏誤設計〉,長庚大學,碩士論文。
Addelman, S. (1964). "Some Two-Level Factorial Plans with Split-Plot Confounding". Technometrics 6, 253–258.
Bingham, D. and Sitter, R. R. (1999). "Minimum Aberration Two-Level Fractional Factorial Split-Plot Designs". Technometrics 41, 62–70.
Box, G. E. P., and Hunter, J. S. (1961a). "The 2k-p Fractional Factorial Design Part I". Technometrics 3, 311-351.
Box, G. E. P., and Hunter, J. S. (1961b). "The 2k-p Fractional Factorial Design Part II". Technometrics 3, 449-458.
Box, G. E. P., and Wilson, K.G. (1951). "On the Experimental Attainment of Optimum Conditions". Journal of the Royal Statistical Society, B, 13, 1-45.
Chen, J. (1992). "Some results on 2n-k Fractional Factorial Designs and Search for Minimum Aberration Designs". The Annals of Statistics 20, 2124-2141.
Chen, J.; Sun, D. X.; and Wu, C. F. J. (1993). "A Catalogue of Two-Level and Three-Level Fractional Factorial Designs with Small Runs". International Statistical Review 61, 131–145.
Fisher, R. A. (1958). Statistical Methods for Research Workers. 13th edition. Oliver and Boyd, Edinburgh.
Fisher, R. A. (1966). The Design of Experiments. 8th edition. Hafner Publishing Company, New York.
Franklin, M. F. (1984). "Constructing Tables of Minimum Aberration
pn-m Designs". Technometrics 26, 225-232.
Franklin, M. F. (1985). "Selecting Defining Contrasts and Confounded Effects in pn-m Factorial Experiments". Technometrics 27, 165-172.
Franklin, M. F. and Bailey, R. A. (1977). "Selection of Defining Contrasts and Confounded Effects in Two-Level Experiments". Applied Statistics 26, 321–326.
Fries, A. and Hunter, W. G. (1980). "Minimum Aberration 2k-p Designs". Technometrics 22, 601–608.
Goos, P. and Vandebroek, M. (2001). "Optimal Split-Plot Designs". Journal of Quality Technology 33, 436–450.
Huang, P., Chen, D. and Voelkel, J. (1998). "Minimum Aberration Two-level Split-Plot Designs". Technometrics 40, 314–326.
Kacker, R. N., and Tsui, K. L. (1990). "Interaction Graphical Aids for Planning Experiments". Journal of Quality Technology 22, 1-14.
Kempthorne, O. (1952). The Design and Analysis of Experiments. John Wiley &; Sons, New York.
Li, W., and Lin, D. K. J. (2003). "Optimal Foldover Plans for Two-Level Fractional Factorial Designs". Technometrics 45, 142-149.
McLeod, R. G., and Brewster, J. F. (2004). "The Design of Blocked Fractional Factorial Split-plot Experiments". Technometrics 46, 135-146.
Sitter, R. R., Chen, J., and Feder, M. (1997). "Fractional Resolution and Minimum Aberration in Blocked 2n-k Designs". Technometrics 39, 382-390.
Taguchi, G., and Wu, Y. (1980). Introduction to Off-Line Quality Control. Central Japan Quality Control Association, Nagoya, Japan.
Taguchi, G. (1987). System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Cost, UNIPUB, White Plains, NY.
Taguchi, G. (1991). Introduction to Quality Engineering. Asian Productivity Organization, UNIPUB, White Plains, NY.
Wang, P. C. (1991). "Symbol Changes and Trend Resistance in Orthogonal Plans of Symmetric Factorials". Sankhya ̅ B 53, 297-303.
Wang, P. C. (2007). "Planning Experiments When Some Specified Interactions are Investigated". Computational Statistics and Data Analysis 51, 4143-4151.
Wang, P. C. (2010). "A Simple Method for Obtaining Minimum Aberration Designs". Communications in Statistics – Theory and Methods 39, 3363-3370.
Wang, P. C., and Jan, H. W. (1995). "Designing Two-Level Factorial Experiments Using Orthogonal Arrays When the Run Order is Important". The Statistician 44, 379-388.
Wu, C. F. J. and Chen, Y. (1992). "A Graph-Aided Method for Planning Two-Level Experiments When Certain Interactions are Important". Technometrics 34, 162-175.
Wu, C. F. J. and Zhang, R. (1993). "Minimum Aberration Designs with Two-Level and Four-Level Factors". Biometrika 80, 203-209.
Xu, H. (2006). "Blocked Regular Fractional Factorial Designs with Minimum Aberration ". The Annals of Statistics 34, 2534-2553.
Yang, J., Zhang, R., and Liu, M. (2007). "Construction of Fractional Factorial Split-Plot Designs with Weak Minimum Aberration". Statistics and Probability Letters 77, 1567-1573.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top