跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 03:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江鴻生
研究生(外文):Hongsen Chiang
論文名稱:關節軟骨損傷之修補
論文名稱(外文):Repair of articular cartilage damage
指導教授:黃義侑黃義侑引用關係
指導教授(外文):Yi-You Huang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:86
中文關鍵詞:組織工程關節軟骨損傷修補
外文關鍵詞:Tissue engineeringArticular cartilage repair
相關次數:
  • 被引用被引用:0
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
關節軟骨損傷後自我修補的能力極差,而必須仰賴手術填補、以免進行惡化為退化性關節炎之後遺症。但可供移植使用的自體軟骨來源稀少,必須仰賴生物科技、以組織工程原理產製新生自體軟骨,供做修補所需。此種新生軟骨的建構,主要是將軟骨生成細胞以可分解性生物材料攜帶並固著在軟骨缺損處,令其產製軟骨基質、形成完整軟骨來填補缺損。
親水膠體與固態聚合物是上述生物材料的兩項主要類別,其使用於軟骨損傷修補用途時優劣互見。本研究旨在測試該等材料實用於生體之可行性、效度、以及所生成之新生軟骨品質。研究並以豬建立一標準的動物模式作為一貫之測試平台。研究包括:(一)以明膠微粒貼附軟骨細胞,注射於已經骨膜補丁之軟骨缺損處;(二)聚乳酸固態多孔狀海綿,一部分與磷酸三鈣鹽混合以建構一兩相式骨骼軟骨移植體,直接敷用於軟骨缺損併同其下硬骨處,而免除縫補等固定植體之手續。以上兩種模式,結果都能於軟骨缺損處成功生成透明軟骨,使缺損處得以補平。
本研究並附帶探討此等軟骨損傷修補的臨床可行性。一位罹換解離性骨軟骨炎之病患的膝關節內有一軟骨缺損需要修補,而在該關節內幸運地發現一片可能是脫落下來的軟骨碎片,大小足供修補其缺損。經手術將該碎片縫回缺損部位,六個月後發現已成功癒合並固著於原先缺損處。該發現證實:只要能夠產製合適自體軟骨植體,前述「以新生軟骨修補軟骨損傷」確實可行。
Articular cartilage has very limited ability to repair after damage, and should be replaced surgically to prevent consequential degenerative arthritis. The donor source for autogenous cartilage is extremely short, and regeneration of the cartilage graft by tissue engineering becomes the mainstay in this century. Successful generation of such a tissue depends on chondrogenic cells carried with biodegradable materials to stay at the defect site, where the cell produce extracellular matrix to replace the space.
Hydrogels and solid polymer sponge are the two major categories of such material, both with advantages and shortcomings. This research investigated both these materials to carry chondrogenic cells and generate cartilage at chondral defect. Their efficacy, surgical applicability and quality of generated cartilage were studied. A porcine model was developed as a standard platform to testify all investigated subjects. Research included: (1) Gelatin microsphere was the hydrogel used, and was applied to the defect after patching with periosteum. (2) Polylactic acid sponge partially mixed with beta-tricalcium phosphate was fashioned to a biphasic osteochondral construct to replace the cartilage defect along with the subchondral bone, to avoid additional fixing procedure while applied surgically. In both models, hyaline cartilage successfully generated to replace the space of degraded biomaterial and filled that cartilage defect.
An addendum to this doctoral research was mended to see the clinical relevance of such modern technique of tissue engineering. Cartilage defect in the knee joint of a patient of osteochondritis dissecans was replaced with a piece of autologous cartilage found incidentally in the joint. Satisfactory healing gave evidence that articular cartilage defect can be replaced surgically, providing that an ideal graft can be obtained.
Chapter 1. Diarthrodial joint and cartilage: 6
Chapter 2. Repair of articular cartilage injury: review and prospective: 11
Chapter 3. Repair of porcine articular cartilage defect with autologous chondrocyte transplantation: 22
Chapter 4. Repair of porcine articular cartilage defect with biphasic osteochondral composite: 43
Chapter 5. Clinical relevance: the clinical experience: 68
Chapter 6. Summary and future: 75
References: 78
1.Wayne JS, McDowell CL, Shields KJ, Tuan RS: In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tissue Eng. 11:953-63, 2005
2.Mankin HJ, Mow VC, Buckwalter JA, Iannotti JP, Ratcliffe A: Articular cartilage structure, composition, and function. In: Buckwalter JA, Einhorn TA, Simon SR, Eds. Orthopaedic basic science: biology and biomechanics of the musculoskeletal sysytem. pp 443-70. Rosemont, IL, American Academy of Orthopaedic Surgeons, 2000
3.Akizuki S, Mow VC, Muller F, Pita JC, Howell DS, Manicourt DH: Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J Orthop Res. 4:379-92, 1986
4.Akizuki S, Mow VC, Muller F, Pita JC, Howell DS: Tensile properties of human knee joint cartilage. II. Correlations between weight bearing and tissue pathology and the kinetics of swelling. J Orthop Res. 5:173-86, 1987
5.Kim YJ, Sah RL, Grodzinsky AJ, Plaas AH, Sandy JD: Mechanical regulation of cartilage biosynthetic behavior: physical stimuli. Arch Biochem Biophys. 311:1-12, 1994
6.Sah RL, Kim YJ, Doong JY, Grodzinsky AJ, Plaas AH, Sandy JD: Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res. 7:619-36, 1989
7.Palmoski MJ, Brandt KD: Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis Rheum. 27:675-81, 1984
8.Ochi M, Uchio Y, Tobita M, Kuriwaka M: Current concepts in tissue engineering technique for repair of cartilage defect. Artif Organs. 25:172-9, 2001
9.van der Kraan PM, Buma P, van Kuppevelt T, van den Berg WB: Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis Cartilage. 10:631-7, 2002
10.Rohde RS, Studer RK, Chu CR: Mini-pig fresh osteochondral allografts deteriorate after 1 week of cold storage. Clin Orthop. 2004
11.Gole MD, Poulsen D, Marzo JM, Ko SH, Ziv I: Chondrocyte viability in press-fit cryopreserved osteochondral allograft. J Orthop Res. 22:781-7, 2004
12.Williams III RJ, Dreese JC, Chen CT: Chondrocyte survival and material properties of hypothermically stored cartilage: an evaluation of tissue used for osteochondral allograft transplantation. Am J Sports Med. 32:132-9, 2004
13.Phipatanakul WP, van de Vord PJ, Teitge RA, Woodly PH: Immune response in patients receiving fresh osteochondral allograft. Am J Orthop. 33:345-8, 2004
14.Grande DA, Pitman MI, Peterson L, Menche D, Klein M: The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res. 7:208-18, 1989
15.Johnson LL: Arthroscopic abrasion arthroplasty. Historical and pathological perspective: present status. Arthroscopy. 2:54-9, 1986
16.Steadman JR, Rodkey WG, Rodrigo JJ: Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop. 391 Suppl:S362-9, 2001
17.Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 331:889-95, 1994
18.Hangody L, Feczko P, Bartha L, Bodo G, Kish G: Mosaicplasty for the treatment of articular defects of the knee and ankle. Clin Orthop. 391 Suppl:S328-36, 2001
19.Giannini S, Vannini F, Buda R: Osteoarticular grafts in the treatment of OCD of the talus: Mosaicplasty versus autologous chondrocyte transplantation. Foot Ankle Clin. 7:621-33, 2002
20.Hangody L, Fules P: Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of the weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am. 85 Suppl 2:25-32, 2003
21.Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R: Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. J Bone Joint Surg Am. 85:185-92, 1985
22.Chow JC, Hantes ME, Houle JB, Zalavras CG: Arthroscopic autogenous osteochondral transplantation for treating knee cartilage defects: a 2- to 5-year follow-up study. Arthroscopy. 20:681-90, 2004
23.O''Driscoll SW, Keeley FW, Salter RB: The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion: an experimental investigation in the rabbit. J Bone Joint Surg Am. 68:1017-35, 1986
24.O''Driscoll SW, Keeley FW, Salter RB: Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion: a follow-up report at one year. J Bone Joint Surg Am. 70:595-606, 1988
25.O''Driscoll SW: Articular cartilage regeneration using periosteum. Clin Orthop. 367 Suppl:S186-203, 1999
26.Kon M: Cartilage formation from preichondrium in a weight-bearing joint: an experimental study. Eur Surg Res. 13:387-96, 1981
27.Liu Y, Chen F, Liu W, Cui L, Shang Q, Xia W, Wang J, Cui Y, Yang G, Liu D, Wu J, Xu R, Buonocore SD, Cao Y: Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng. 8:709-21, 2002
28.Grigolo B, Roseti L, Fiorini M, Fini M, Giavaresi G, Aldini NN, Giardino R, Facchini A: Transplantation of chondrocytes on a hyaluronan derivative (Hyaff-11) into cartilage defects in rabbits. Biomaterials. 22:2417-24, 2001
29.Chiang H, Kuo TF, Tsai CC, Lin MC, She BR, Huang YY, Lee HS, Shieh CS, Chen MH, Ramshawe JAM, Werkmeistere JA, Tuan RS, Jiang CC: Repair of porcine articular cartilage defect with autologous chondrocyte transplantation. J Orthop Res. 23:584-93, 2005
30.Anderson-Mackenzie JM, Hulmes DJ, Thorp BH: Degenerative joint disease in poultry: Differences in composition and morphology of articular cartilage are associated with strain susceptibility. Res Vet Sci. 63:29-33, 1997
31.Shoemaker RS, Bertone AL, Martin GS, McIlwraith CW, Roberts ED, Pechman R, Kearney MT: Effects of intra-articular administration of methylprednisolone acetate on normal articular cartilage and on healing of experimentally induced osteochondral defects in horses. Am J Vet Res. 53:1446-53, 1992
32.Buschmann MD, Gluzband YA, Grodzinsky AJ, Kimura JH, Hunziker EB: Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J Orthop Res. 10:745-58, 1992
33.Mauck RL, Seyhan SL, Ateshian GA, Huug CT: Influence of seeding density and dynamic deformation loading on the developing structure/ function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng. 30:1046-56, 2002
34.Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE: Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res. 17:130-8, 1999
35.Chang SC, Rowley JA, Tobias G, Genes NG, Roy AK, Mooney DJ, Vacanti CA, Bonassar LJ: Injection molding of chondrocyte/alginate constructs in the shape of facial implants. J Biomed Mater Res. 55:503-11, 2001
36.Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT: The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage. 11:879-90, 2003
37.Lefebvre V, Peeters-Joris C, Vaes G: Production of collagens, collagenase and collagenase inhibitor during the dedifferentiation of articular chondrocytes by serial subcultures. Biochim Biophys Acta. 1051:266-75, 1990
38.Chaipinyo K, Oakes BW, van Damme M-PI: The use of debrided human articular cartilage for autologous chondrocyte implantation: maintenance of chondrocyte differentiation and proliferation in type I collagen gels. J Orthop Res. 22:446-55, 2004
39.Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 284:143-7, 1999
40.Lee HS, Huang GT, Chiang H, Chiou LL, Chen MH, Hsieh CH, Jiang CC: Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cells. 21:190-9, 2003
41.Tuli R, Nandi S, Li W-J, Tuli S, Huang X, Manner PA, Laquerriere P, Noth U, Hall DJ, Tuan RS: Human mesenchymal progenitor cell-based tissue engineering of a single-unit osteochondral construct. Tissue Eng. 10:1169-79, 2004
42.Lu L, Zhu X, Valenzuela RG, Currier BL, Yaszemski MJ: Biodegradable polymer scaffolds for cartilage tissue engineering. Clin Orthop. 391 Suppl:S251-70, 2001
43.Bouwmeester SJ, Beckers JM, Kuijer R, van der Linden AJ, Bulstra SK: Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee. Int Orthop. 21:313-7, 1997
44.Hendrickson DA, Nixon AJ, Grande DA, Todhunter RJ, Minor RM, Erb H, Lust G: Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J Orthop Res. 12:485-97, 1994
45.Rahfoth B, Weisser J, Sternkopf F, Aigner T, von der Mark K, Brauer R: Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage. 6:50-65, 1998
46.Fuss M, Ehlers EM, Russlies M, Rohwedel J, Behrens P: Characteristics of human chondrocytes, osteoblasts and fibroblasts seeded onto a type I/III collagen sponge under different culture conditions. A light, scanning and transmission electron microscopy study. Anat Anz. 182:303-10, 2000
47.Nehrer S, Breinan HA, Ramappa A, Shortkroff S, Young G, Minas T, Sledge CB, Yannas IV, Spector M: Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res. 38:95-104, 1997
48.Ronziere MC, Roche S, Gouttenoire J, Demarteau O, Herbage D, Freyria AM: Ascorbate modulation of bovine chondrocyte growth, matrix protein gene expression and synthesis in three-dimensional collagen sponges. Biomaterials. 24:851-61, 2003
49.Toolan BC, Frenkel SR, Pachence JM, Yalowitz L, Alexander H: Effects of growth-factor-enhanced culture on a chondrocyte-collagen implant for cartilage repair. J Biomed Mater Res. 31:273-80, 1996
50.Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM: Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 76:579-92, 1994
51.Samuel RE, Lee CR, Ghivizzani SC, Evans CH, Yannas IV, Olsen BR, Spector M: Delivery of plasmid DNA to articular chondrocytes via novel collagen-glycosaminoglycan matrices. Hum Gene Ther. 13:791-802, 2002
52.Baragi VM, Renkiewicz RR, Qiu L, Brammer D, Riley JM, Sigler RE, Frenkel SR, Amin A, Abramson SB, Roessler BJ: Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo. Osteoarthritis Cartilage. 5:275-82, 1997
53.Gao J, Dennis JE, Solchaga LA, Goldberg VM, Caplan AI: Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng. 8:827-37, 2002
54.Solchaga LA, Gao J, Dennis JE, Awadallah A, Lundberg M, Caplan AI, Goldberg VM: Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Eng. 8:333-47, 2002
55.Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A: Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials. 21:2155-61, 2000
56.Frenkel SR, Di Cesare PE: Scaffolds for articular cartilage repair. Ann Biomed Eng. 32:26-34, 2004
57.Caterson EJ, Li WJ, Nesti LJ, Albert T, Danielson K, Tuan RS: Polymer/ alginate amalgam for cartilage-tissue engineering. Ann N Y Acad Sci. 961:134-8, 2002
58.Woodfield TB, Bezemer JM, Pieper JS, van Blitterswijk CA, Riesle J: Scaffolds for tissue engineering of cartilage. Crit Rev Eukaryot Gene Expr. 12:209-36, 2002
59.Temenoff JS, Athanasiou KA, LeBaron RG, Mikos AG: Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J Biomed Mater Res. 59:429-37, 2002
60.Healy KE, Rezania A, Stile RA: Designing biomaterials to direct biological responses. Ann N Y Acad Sci. 875:24-35, 1999
61.Kus WM, Gorecki A, Strzelczyk P, Swiader P: Carbon fiber scaffolds in the surgical treatment of cartilage lesions. Ann Transplant. 4:101-2, 1999
62.Ng KW, Wang CC, Mauck RL, Kelly TA, Chahine NO, Costa KD, Ateshian GA, Hung CT: A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs. J Orthop Res. 23:134-41, 2005
63.Schek RM, Taboas JM, Segvich SJ, Hollister SJ, Krebsbach PH: Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng. 10:1376-85, 2004
64.Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A: A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials. 23:4739-51, 2002
65.Mankani MH, Kuznetsov SA, Fowler B, Kingman A, Robey PG: In vivo bone formation by human bone marrow stromal cells: effect of carrier particle size and shape. Biotechnol Bioeng. 72:96-107, 2001
66.Goshima J, Goldberg VM, Caplan AI: The origin of bone formed in composite grafts of porous calcium phosphate ceramic loaded with marrow cells. Clin Orthop. 269:274-83, 1991
67.Ohgushi H, Goldberg VM, Caplan AI: Heterotopic osteogenesis in porous ceramics induced by marrow cells. J Orthop Res. 7:568-78, 1989
68.Lee DA, Martin I: Bioreactor culture techniques for cartilage-tissue engineering. Methods Mol Biol. 238:159-70, 2004
69.Vunjak-Novakovic G, Obradovic B, Martin I, Freed LE: Bioreactor studies of native and tissue engineered cartilage. Biorheology. 39:259-68, 2002
70.Grad S, Lee CR, Gorna K, Gogolewski S, Wimmer MA, Alini M: Surface motion upregulates superficial zone protein and hyaluronan production in chondrocyte-seeded three-dimensional scaffolds. Tissue Eng. 11:249-56, 2005
71.Seidel JO, Pei M, Gray ML, Langer R, Freed LE, Vunjak-Novakovic G: Long-term culture of tissue engineered cartilage in a perfused chamber with mechanical stimulation. Biorheology. 41:445-58, 2004
72.Malda J, van den Brink P, Meeuwse P, Grojec M, Martens DE, Tramper J, Riesle J, van Blitterswijk CA: Effect of oxygen tension on adult articular chondrocytes in microcarrier bioreactor culture. Tissue Eng. 10:987-94, 2004
73.Williams KA, Saini S, Wick TM: Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering. Biotechnol Prog. 18:951-63, 2002
74.Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, Valhmu WB, Hung CT, Ateshian GA: Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng. 122:252-60, 2000
75.Iwasaki M, Nakata K, Nakahara H, Nakase T, Kimura T, Kimata K, Caplan AI, Ono K: Transforming growth factor-beta 1 stimulates chondrogenesis and inhibits osteogenesis in high density culture of periosteum-derived cells. Endocrinology. 132:1603-8, 1993
76.Chimal-Monroy J, Diaz de Leon L: Differential effects of transforming growth factors beta 1, beta 2, beta 3 and beta 5 on chondrogenesis in mouse limb bud mesenchymal cells. Int J Dev Biol. 41:91-102, 1997
77.Awad HA, Halvorsen YD, Gimble JM, Guilak F: Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng. 9:1301-12, 2003
78.Tuli R, Tuli S, Nandi S, Huang X, Manner PA, Hozack WJ, Danielson KG, Hall DJ, Tuan RS: Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem. 278:41227-36, 2003
79.Chen P, Carrington JL, Hammonds RG, Reddi AH: Stimulation of chondrogenesis in limb bud mesoderm cells by recombinant human bone morphogenetic protein 2B (BMP-2B) and modulation by transforming growth factor beta 1 and beta 2. Exp Cell Res. 195:509-15, 1991
80.Kramer J, Hegert C, Guan K, Wobus AM, Muller PK, Rohwedel J: Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev. 92:193-205, 2000
81.Shea CM, Edgar CM, Einhorn TA, Gerstenfeld LC: BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. J Cell Biochem. 90:1112-27, 2003
82.Jiang TX, Yi JR, Ying SY, Chuong CM: Activin enhances chondrogenesis of limb bud cells: stimulation of precartilaginous mesenchymal condensations and expression of NCAM. Dev Biol. 155:545-57, 1993
83.Asahina I, Sampath TK, Nishimura I, Hauschka PV: Human osteogenic protein-1 induces both chondroblastic and osteoblastic differentiation of osteoprogenitor cells derived from newborn rat calvaria. J Cell Biol. 123:921-33, 1993
84.Quarto R, Campanile G, Cancedda R, Dozin B: Modulation of commitment, proliferation, and differentiation of chondrogenic cells in defined culture medium. Endocrinology. 138:4966-76, 1997
85.Martin I, Vunjak-Novakovic G, Yang J, Langer R, Freed LE: Mammalian chondrocytes expanded in the presence of fibroblast growth factor 2 maintain the ability to differentiate and regenerate three-dimensional cartilaginous tissue. Exp Cell Res. 253:681-8, 1999
86.Fortier LA, Nixon AJ, Lust G: Phenotypic expression of equine articular chondrocytes grown in three-dimensional cultures supplemented with supraphysiologic concentrations of insulin-like growth factor-1. Am J Vet Res. 63:301-5, 2002
87.French MM, Rose S, Canseco J, Athanasiou KA: Chondrogenic differentiation of adult dermal fibroblasts. Ann Biomed Eng. 32:50-6, 2004
88.Ogueta S, Munoz J, Obregon E, Delgado-Baeza E, Garcia-Ruiz JP: Prolactin is a component of the human synovial liquid and modulates the growth and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Mol Cell Endocrinol. 190:51-63, 2002
89.Tonon R, D''Andrea P: Interleukin-1beta increases the functional expression of connexin 43 in articular chondrocytes: evidence for a Ca2+-dependent mechanism. J Bone Miner Res. 15:1669-77, 2000
90.Wong M, Kireeva ML, Kolesnikova TV, Lau LF: Cyr61, product of a growth factor-inducible immediate-early gene, regulates chondrogenesis in mouse limb bud mesenchymal cells. Dev Biol. 192:492-508, 1997
91.Tsukazaki T, Matsumoto T, Enomoto H, Usa T, Ohtsuru A, Namba H, Iwasaki K, Yamashita S: Growth hormone directly and indirectly stimulates articular chondrocyte cell growth. Osteoarthritis Cartilage. 2:259-67, 1994
92.Massague J, Wotton D: Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 19:1745-54, 2000
93.Tuli R, Seghatoleslami MR, Tuli S, Howard MS, Danielson KG, Tuan RS: p38 MAP kinase regulation of AP-2 binding in TGF-beta1-stimulated chondrogenesis of human trabecular bone-derived cells. Ann N Y Acad Sci. 961:172-7, 2002
94.Zhou S, Eid K, Glowacki J: Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner Res. 19:463-70, 2004
95.Biddulph DM, Dozier MM, Capehart AA: Inhibition of prostaglandin synthesis reduces cyclic AMP levels and inhibits chondrogenesis in cultured chick limb mesenchyme. Methods Cell Biol. 22:9-16, 2000
96.Miyamoto M, Ito H, Mukai S, Kobayashi T, Yamamoto H, Kobayashi M, Maruyama T, Akiyama H, Nakamura T: Simultaneous stimulation of EP2 and EP4 is essential to the effect of prostaglandin E2 in chondrocyte differentiation. Osteoarthritis Cartilage. 11:644-52, 2003
97.Siebler T, Robson H, Shalet SM, Williams GR: Dexamethasone inhibits and thyroid hormone promotes differentiation of mouse chondrogenic ATDC5 cells. Bone. 31:457-64, 2002
98.Tsonis PA: 1,25-Dihydroxyvitamin D3 stimulates chondrogenesis of the chick limb bud mesenchymal cells. Dev Biol. 143:130-4, 1991
99.Harmand MF, Thomasset M, Rouais F, Ducassou D: In vitro stimulation of articular chondrocyte differentiated function by 1,25-dihydroxycholecalciferol or 24R,25-dihydroxycholecalciferol. J Cell Physiol. 119:359-65, 1984
100.Farquharson C, Berry JL, Mawer EB, Seawright E, Whitehead CC: Ascorbic acid-induced chondrocyte terminal differentiation: the role of the extracellular matrix and 1,25-dihydroxyvitamin D. Eur J Cell Biol. 76:110-8, 1998
101.Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 238:265-172, 1998
102.Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF: Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4:415-28, 1998
103.Kulyk WM, Hoffman LM: Ethanol exposure stimulates cartilage differentiation by embryonic limb mesenchyme cells. Exp Cell Res. 223:290-300, 1996
104.Kulyk WM: Promotion of embryonic limb cartilage differentiation in vitro by staurosporine, a protein kinase C inhibitor. Dev Biol. 146:38-48, 1991
105.Revillion-Carette F, Desbiens X, Meunier L, Bart A: Chondrogenesis in mouse limb buds in vitro: effects of dibutyryl cyclic AMP treatment. Differentiation. 33:121-9, 1986
106.Mikhailov AT, Gorgolyuk NA: Concanavalin A induces neural tissue and cartilage in amphibian early gastrula ectoderm. Cell Differ. 22:145-54, 1988
107.Kato Y, Iwamoto M, Koike T, Suzuki F: Effect of vanadate on cartilage-matrix proteoglycan synthesis in rabbit costal chondrocyte cultures. J Cell Biol. 104:311-9, 1987
108.Brittberg M: Autologous chondrocyte transplantation. Clin Orthop. 367 Suppl:S147-55, 1999
109.Poole RA: What type of cartilage repair are we attempting to attain? J Bone Joint Surg Am. 85 Suppl 2:40-4, 2003
110.Micheli LJ, Browne JE, Erggelet C, Fu F, Mandelbaum B, Moseley JB, Zurakowski D: Autologous chondrocyte implantationof the knee: multicenter experience and minimum 3-year follow-up. Clin J Sport Med. 11:223-8, 2001
111.Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A: Autologous chondrocyte transplantation: biomechanics and long-term durability. Am J Sports Med. 30:2-12, 2002
112.Drury JL, Mooney DJ: Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials. 24:4337-51, 2003
113.Milliken GA, Johnson DE: Analysis of messy data., pp 46-66. New York, van Nostrand Reinhold, 1984
114.Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, Kandel R, Nehere S, Pritzker K, Roberts S, Stauffer E: Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Joint Surg Am. 85 Suppl 2:45-57, 2003
115.Mak AF, Lai WM, Mow VC: Biphasic indentation of articular cartilage -I: theoretical analysis. J Biomech. 20:703-14, 1987
116.Mow VC, Gibbs MC, Lai WM, Zhu WB, Athanasiou KA: Biphasic indentation of articular cartilage -II: a numerical algorithm and an experimental study. J Biomech. 22:853-61, 1989
117.Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Hong J, Kandel RA: Effect of biomechanical conditioning on cartilaginous tissue formation in vitro. J Bone Joint Surg Am. 85 Suppl 2:101-5, 2003
118.Mankin HJ, Dorfman H, Lippiello L, Zarins A: Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips: II: correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am. 53:523-37, 1971
119.van der Sluijs JA, Geesink RG, van der Linden AJ, Bulstra SK, Kuyer R, Drukker J: The reliability of the Mankin score for osteoarthritis. J Orthop Res. 10:58-61, 1992
120.Ostergaard K, Petersen J, Andersen CB, Bendtzen K, Salter DM: Histologic/ histochemical grading system for osteoarthritic articular cartilage: reproducibility and validity. Arthritis Rheum. 40:1766-71, 1997
121.O''Driscoll SW, Fitzsimmons JS: The role of periosteum in cartilage repair. Clin Orthop. 391 Suppl:S190-207, 2001
122.Elliott DM, Guilak F, Vail TP, Wang JY, Setton LA: Tensile properties of articular cartilage are altered by menisectomy in a canine model of osteoarthritis. J Orthop Res. 17:503-8, 1999
123.Mow VC, Kuei SC, Lai WM: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng. 102:73-84, 1980
124.Frenkel SR, Bradica G, Brekke JH, Goldman SM, Ieska K, Issack P, Bong MR, Tian H, Gokhale J, Coutts RD, Kronengold RT: Regeneration of articular cartilage - Evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthritis Cartilage. 13:798-807, 2005
125.Ushida T, Furukawa K, Toita K, Tateishi T: Three-dimensional seeding of chondrocytes encapsulated in collagen gel into PLLA scaffolds. Cell Transplant. 11:489-94, 2002
126.Noth U, Tuli R, Osyczka AM, Danielson KG, Tuan RS: In vitro engineered cartilage constructs produced by press-coating biodegradable polymer with human mesenchymal stem cells. Tissue Eng. 8:131-44, 2002
127.Schaefer D, Martin I, Shastri P, Padera RF, Langer R, Freed LE, Vunjak-Novakovic G: In vitro generation of osteochondral composites. Biomaterials. 21:2599-606, 2000
128.Wang X, Grogan SP, Rieser F, Winkelmann V, Maquet V, La Berge M, Mainil-Varlet P: Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study. Biomaterials. 25:3681-8, 2004
129.Gao J, Dennis JE, Solchaga LA, Awadallah AS, Goldberg VM, Caplan AI: Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng. 7:363-71, 2001
130.Liao CJ, Chen CF, Chen JH, Chiang SF, Lin YJ, Chang KY: Fabrication of porous biodegradable polymer scaffolds using a solvent merging/ particulate leaching method. J Biomed Mater Res. 59:676-81, 2002
131.Schaefer D, Martin I, Jundt G, Seidel J, Heberer M, Grodzinsky A, Bergin I, Vunjak-Novakovic G, Freed LE: Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum. 46:2524-34, 2002
132.Cao T, Ho KH, Teoh SH: Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng. 9 Suppl 1:S103-12, 2003
133.Tanaka T, Komaki H, Chazono M, Fujii K: Use of a biphasic graft constructed with chondrocytes overlying a beta-tricalcium phosphate block in the treatment of rabbit osteochondral defects. Tissue Eng. 11:331-9, 2005
134.Chang C, Lauffenburger DA, Morales TI: Motile chondrocytes from newborn calf: migration properties and synthesis of collagen II. Osteoarthritis Cartilage. 11:603-12, 2003
135.Shimizu M, Minakuchi K, Kaji S, Koga J: Chondrocyte migration to fibronectin, type I collagen, and type II collagen. Cell Struct Funct. 22:309-15, 1997
136.Maniwa S, Ochi M, Motomura T, Nishikori T, Chen J, Naora H: Effects of hyaluronic acid and basic fibroblast growth factor on motility of chondrocytes and synovial cells in culture. Acta Orthop Scand. 72:299-303, 2001
137.Robinson D, Nevo Z: Articular cartilage chondrocytes are more advantageous for generating hyaline-like cartilage than mesenchymal cells isolated from microfracture repairs. Cell Tissue Bank. 2:23-30, 2001
138.Iwasa J, Ochi M, Uchio Y, Katsube K, Adachi N, Kawasaki K: Effects of cell density on proliferation and matrix synthesis of chondrocytes embedded in atelocollagen gel. Artif Organs. 27:249-55, 2003
139.Willers C, Chen J, Wood D, Xu J, Zheng MH: Autologous chondrocyte implantation with collagen bioscaffold for the treatment of osteochondral defects in rabbits. Tissue Eng. 11:1065-76, 2005
140.Coletti Jr JM, Akeson WH, Woo SL: A comparison of the physical behavior of normal articular cartilage and the arthroplasty surface. J Bone Joint Surg Am. 54:147-60, 1972
141.Altman RD, Tenenbaum J, Latta L, Riskin W, Blanco LN, Howell DS: Biomechanical and biochemical properties of dog cartilage in experimentally induced osteoarthritis. Ann Rheum Dis. 43:83-90, 1984
142.Mow VC, Gu WY, Chen FH: Structure and function of articular cartilage and meniscus. In: Mow VC, Huiskes R, Eds. Basic orthopaedic biomechanics and mechano-biology. pp 182-243. Philadelphia PA, Lippincott Williams & Wilkins, 2005
143.Mitchell N, Shepard N: The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone. J Bone Joint Surg Am. 58:230-3, 1976
144.Gill TJ: The treatment of articular cartilage defects using microfracture and debridement. Am J Knee Surg. 13:33-40, 2000
145.Angermann P, Harager K, Tobin LL: Arthroscopic chondrectomy as a treatment of cartilage lesions. Knee Surg Sports Traumatol Arthrosc. 10:6-9, 2002
146.Hughston JC, Hergenroeder PT, Courtenay BG: Osteochondritis dissecans of the femoral condyles. J Bone Joint Surg Am. 66:1340-8, 1984
147.Peterson L, Minas T, Brittberg M, Lindahl A: Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am. 85 Suppl 2:17-24, 2003
148.De Bari C, Dell''Accio F, Tylzanowski P, Luyten FP: Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 44:1928-42, 2001
149.Rothwell AG: Synovial transplantation onto the cartilage denuded patellar groove of the sheep knee joint. Orthopedics. 13:433-42, 1990
150.Hunziker EB, Rosenberg LC: Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am. 78:721-33, 1996
151.Mohr W: Is synovial osteo-chondromatosis a proliferative disease? Pathol Res Pract. 198:585-8, 2002
152.Schalkwijk J, Joosten LA, van der Berg WB, van Wyk JJ, van de Putte LB: Insulin-like growth factor stimulation of chondrocyte proteoglycan synthesis by human synovial fluid. Arthritis Rheum. 32:66-71, 1989
153.Miller III RH: Knee injuries. In: Canale TS, Ed. Campbell''s operative orthopaedics. pp 2165-337. Philadelphia, Mosby, 2003
154.Hunziker EB, Duinn TM: Surgical removal of articular cartilage leads to loss of chondrocytes from cartilage bordering the wound edge. J Bone Joint Surg Am. 85 Suppl 2:85-100, 2003
155.Levy AS, Lohnes J, Sculley S, LeCroy M, Garrett W: Chondral delamination of the knee in scccer players. Am J Sports Med. 24:634-9, 1996
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 10、 侯英泠,醫療行為的民事上賠償責任—從德國醫師責任法切入探討(上),月旦法學雜誌,第72期,2001年5月。
2. 8、 侯英泠,從德國法論醫師之契約上說明義務,月旦法學雜誌,第112期,2004年9月。
3. 6、 林萍章,舉證責任倒置於醫療過失之適用——八九年度重訴字第四七二號判決評釋,醫事法學,10巻2期,2002年6月。
4. 5、 林欣柔、楊秀儀,告別馬偕肩難產事件?新醫療法第八二條第二項評析,月旦法學雜誌,第112期,2004年9月。
5. 4、 沈冠伶,武器平等原則於醫療訴訟之適用,月旦法學雜誌,第127期,2005年12月。
6. 1、 王皇玉,整形美容、患者同意與醫療過失中之信賴原則----評台北地院九十一年訴字第七三○號判決,月旦法學雜誌,第127期,2005年12月。
7. 14、 陳怡安,受試者保護與人體試驗的規範,律師雜誌270期,1997年3月。
8. 15、 曾建元,患者權利的倫理難題---兼論醫療倫理委員會與倫理諮詢專員在其間的角色,應用倫理研究通訊,第二十五期,2003年1月。
9. 16、 黃鈺媖,從醫療水準談婦產科醫療責任注意義務之認定,律師雜誌,308期,2005年5月。
10. 17、 楊秀儀,美國「告知後同意」法則之考察分析,月旦法學雜誌,121期,2005年6月。
11. 21、 蔡甫昌,生命倫理四原則方法,醫學教育,第4巻第2期,2000年。
12. 22、 薛瑞元,醫療契約與告知義務,月旦法學雜誌,第112期,2004年9月。