跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/10/01 03:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳思佑
研究生(外文):Szu-yu Chen
論文名稱:乳酸菌生產丁二酮之代謝路徑分析
論文名稱(外文):Network-based Metabolic Analysis for Producing Diacetyl in Lactic Acid Bacteria
指導教授:王逢盛
指導教授(外文):Feng-Sheng Wang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:81
中文關鍵詞:乳酸菌丁二酮代謝路徑
外文關鍵詞:Lactic Acid BacteriaDiacetylMetabolic Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:972
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
摘要

乳酸菌代謝的主要產物為乳酸(Lactate),但是其副產物丁二酮(Diacetyl)是相當昂貴的乳製品調味料,附加價值較高,但是其產量相當小。在過去有釵h乳酸菌的相關研究,可惜大部分的研究均屬於單一部分的實驗,或者是利用試誤法來提升丁二酮的產量。如果能配合代謝工程的技術,便能找出最佳基因突變決策。
故本研究應用通量平衡分析(Metabolic flux analysis, MFA)的方法,配合反置通量分析(Inverse flux analysis)方法來分析整體內部調控的情況。文中也利用基本通量模式(Elementary flux modes)的二項式最適化分析,來建構乳酸菌的發酵代謝的生理通量路徑分布(Physiological flux distributions),試圖找出有效生成丁二酮的主要途徑,並且對重要基本通量路徑進行酵素交集分析,分析每個基本通量模式各自的角色及弁鄐峔銗眸歲q過的必需路徑(Essential route)。
Abstract

Lactate is one of the major fermented products from lactic acid bacteria. Furthermore, diacetyl is a small amount of valuable byproduct for dairy food and pharmaceutical application. In the past decade, the reserchers only focus on doing parts of the experiments in order to understand the regulatory relationship of lactic acid bacteria metabolism and raise the productivity of diacetyl by trial and error processes. These take a lot of money and time but in vein. If employing the technology of metabolic engineering, we can make a better mutation strategy for producing diacetyl.
In this study, metabolic flux analysis (MFA) and inverse flux analysis are introduced to analyze the impact of the objective flux when the other flux is slightly perturbed. In addition, we use the quadratic programming optimization to construct the physiological flux distributions of lactic acid bacteria metabolism. Further, we compared the enzyme sets of elementary flux modes with each other to characterize the functional routes and the essential route in lactic acid bacteria metabolism.
目錄

中文摘要 ……………………………………………………………………....Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅴ
表目錄 Ⅶ
第一章 緒論…………………………………………………………………..1
1.1 前言………………………………………………………………….1
1.2 文獻回顧…………………………………………………………….6
1.3 研究動機………………………………………………………...…10
1.4 組織章節……………………………………………………………11
第二章 代謝通量分析與反置通量分析.…………………….………….…..12
2.1 代謝通量分析的簡介及其運用…………………………………...12
2.2 反置通量分析及靈敏度分析...………………………………...….15
2.3 路徑分析方法及原理………………………………………….…..17
第三章 乳酸菌代謝模式分析………………………….………...…………22
3.1 系統描述…………………………………………………...………22
3.2 代謝通量分析方法之結果………………………………...………42
3.3 反置通量分析方法之結果…………………………………...……46
第四章 基本通量模式分析…………………………..……………...….…53
4.1 基本通量模式………….………………………………...………53
4.2 二項式最適化方法………………………………………………55
4.3 基本通量模式之弁鄔吨尷R……………………………………58
第五章 結論與建議………………………………………………..………74
參考文獻………………………………………………...……...……………76













圖 目 錄

圖1.1 代謝工程的概念流程圖..…………….………………………………5
圖1.2 代謝路徑分析流程圖………………………………………………..11
圖2.1 簡單生物系統的基本通量模式及其極路徑分析…………………..19
圖2.2 Convex basis vector之示意圖……………………………………….21
圖3.1 乳酸菌代謝路徑圖…………………………………………………..28
圖3.2 分別對所有通量做5%的擾動對丁二酮的影響關係圖……………49
圖3.3 分別對所有通量做5%的擾動對乙醯乳酸的影響關係圖…………50
圖3.4 對丁二酮通量的靈敏度分析圖……………………………………..50
圖4.1 基本通量模式之酵素交集統計圖…………………………………..63
圖4.2 EM8的路徑圖………………………………………………………..64
圖4.3 EM11的路徑圖………………………………………………………65
圖4.4 EM15的路徑圖………………………………………………………66
圖4.5 EM21的路徑圖………………………………………………………67
圖4.6 EM22的路徑圖………………………………………………………68
圖4.7 EM33的路徑圖………………………………………………………69
圖4.8 EM37的路徑圖………………………………………………………70
圖4.9 EM46的路徑圖………………………………………………………71
圖4.10 EM109的路徑圖……………………………………………………72
圖4.11 EM322的路徑圖……………………………………………………73
















表 目 錄

表3.1 乳酸菌代謝反應方程式……………………………………………..29
表3.2 M-M反應動力方程式……………………………………………….30
表3.3 M-M反應動力方程式之符號對照表……………………………….35
表3.4 參與反應之中間代謝物及產物符號說明………………………….38
表3.5 參與反應之酵素符號說明…………………………………………..39
表3.6 通量守恆方程式…………………………………………………….40
表3.7 乳酸菌代謝系統之計量矩陣 ….…………………………………..41
表3.8 的矩陣架構(Wild-type)………………………………………...…43
表3.9 的矩陣架構(Wild-type)…………………………………………...44
表3.10 由MFA方法推得的通量結果(Wild-type)…………………………45
表3.11 反置通量分析中 的矩陣架構(對 做擾動)…………………….47
表3.12 反置通量分析中 的矩陣架構(對 做擾動)……………………48
表3.13 反置通量分析之通量結果(減少 通量5%)…………………….49
表4.1 重要的基本通量模式及每個通量的化學反應式………………….60
表4.2 重要基本通量模式的總反應方程式……………………………….61
表4.3 野生菌株與減少50% 酵素活性的加權比較表………………..61
表4.4 野生菌株與增加50% 酵素活性的加權比較表………………..62
表4.5 野生菌株與減少50% 酵素活性的加權比較表………………..62
表4.6 野生菌株與減少50% 酵素活性的加權比較表………………..63
參考文獻

[1] 王培銘,「由簡而繁的系統生物學」,生物資源保存及研究簡訊,第十七卷,第三期,民國九十三年。

[2] Bailey, J. E., 1999, “Lessons from metabolic engineering for functional genomics and drug discovery”, Nature Biotchnology, 17, 616–618.

[3] Bongers, R. S., Hoefnagel, M. H., and Kleerebezem, M., 2005, “High-level acetaldehyde production in Lactococcus lactis”, Applied and Environmental Microbiology, 1109-1113.

[4] Bresters, T. W., De Kok, A., and Veeger, C., 1975, “The pyruvate-dehydrogenase complex from Azotobacter vinelandii. 2. Regulation of the activity”, European Journal of Biochemistry, 347-53.

[5] Crow, V. L., and Pritchard, G. G., 1977, “Fructose 1,6-diphosphate-activated L-lactate dehydrogenase from Streptococcus lactis: kinetic properties and factors affecting activation”, Journal of Bacteriology, 82-91.

[6] de Ruyter, P. G., Kuipers, O. P., and de Vos, W. M., 1996, “Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin”, Applied and Environmental Microbiology, 3662-7.

[7] Delgado, J., and Liao, J. C., 1997, “Inverse flux analysis for reduction of acetate excretion in Escherichia coli”, Biotchnology Progress, 13, 361-367.

[8] Hillier, A. J., and Jago, G. R., 1982, “L-Lactate dehydrogenase, FDP-activated, from Streptococcus cremoris”, Methods in Enzymology, 89, 362-367.

[9] Hoefnagel, M., Hugenholtz, J., and Snoep, J. L., 2002, “Time dependent responses of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out experiments”, Molecular Biology Reports, 29, 157-61.

[10] Hoefnagel, M., Starrenburg, M. J., Martens, D. E., Hugenholtz, J., Kleerebezem, M., van Swam, I. I., Bongers, R., Westerhoff, H. V. and Snoep, J. L., 2002, “Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis”, Microbiology, 1003-1013.

[11] Hood L., 2002, “A personal view of molecular technology and how it has changed biology,”Journal of Proteome Research, 399-409.

[12] Hugenholtz, J., and Starrenburg, M., 1992, “Diacetyl production by different strains of Lactococcus lactis ssp. lactis var. diacetylactis and Leuconostoc spp”, Applied Microbiology and Biotechnology, 17-22.

[13] Kacser, H., and Burns, J. A., 1973, “The control of flux In Rate Control of Biological Processes”, Symposium of the Society for Experimental Biology Vol 27, 65-104. Cambridge University Press.

[14] Kanehisa, M., and Bork, P., 2003, “Bioinformatics in the post-sequence era”, Nature Genetics, 33, 305-310.

[15] Kholodenko, B. N., Cascante, M., Hoek, J. B., Westerhoff, H. V., and Schwaber, J., 1998, “Metabolic design: how to engineer a living cell to desired metabolite concentrations and fluxes”, Biotechnology and Bioengineering, 239-247.

[16] Kitano, H., 2002, “Systems biology:a brief overview,” Science, 1662-1664.

[17] Kitano, H., 2001, “Systems biology: toward system-level understanding of biological systems,” In Foundations of Systems Biology (Kitano, H., ed.), 1–36, The MIT Press.

[18] Klamt, S., and Stelling, J., 2003,“Two approaches for metabolic pathway analysis? ”, Trends in Biotechnology, 21, 64-69.

[19] Klamt, S., 2003, “FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps”, Bioinformatics, 19, 261-269.

[20] Klamt, S., and Gilles, E. D., 2004, “Minimal cut sets in biochemical reaction networks”, Bioinformatics, 20, 226-234.

[21] Kurata, H., Masaki, K., Sumida, Y., and Iwasaki, R., 2005, “CADLIVE dynamic simulator: Direct link of biochemical networks to dynamic models”, Genome Research, 15, 590-600.

[22] Lopez de Felipe, F., Kleerebezem, M., De Vos, W. M., and Hugenholtz, J., 1998, “Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase”, Journal of Bacteriology, 180, 3804-3808.

[23] Mendes, P., and Kell, D. B., 1998, “Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation”, Bioinformatics, 14, 869-883.

[24] Palsson, B. Ø., Price, N. D., and Papin, J. A., 2003, “Development of network-based pathway definitions: the need to analyze real metabolic networks”, Trends in Biotechnology, 21, 195-198.

[25] Papin, J. A., Price, N. D., Wiback, S. J., Fell, D. A., and Palsson, B. Ø., 2003, “Metabolic pathways in the post-genome era”, Trends in Biochemical Sciences, 28, 250-258.

[26] Papin, J. A., Stelling, J., Price, N. D., Klamt, S., Schuster, S., and Palsson, B. Ø., 2004, “Comparison of network-based pathway analysis methods”, Trends in Biotechnology, 22, 400-405.

[27] Pfeiffer, T., 1999, “METATOOL: for studying metabolic networks”, Bioinformatics, 15, 251-257.

[28] Platteeuw, C., Hugenholtz, J., Starrenburg, M. J. , Van Alen-Boerrigter, I., and De Vos, W. M., 1995, “Metabolic engineering of Lactococcus lactis: influence of the overproduction of alpha-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions”, Applied and Environmental Microbiology, 61, 3967-3971.

[29] Schilling, C. H., Letscher, D., and Palsson, B. Ø., 2000, “Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective”, Journal of Theoretical Biology, 203, 229-248.

[30] Schuster S., Dandekar T., and Fell, D. A., 1999, “Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering”, Trends in Biotechnology, 17, 53-60.

[31] Schuster S., Fell, D. A., and Dandekar T., 2000, “A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks”, Nature Biotechnology, 18, 326-332.

[32] Schuster, S., and Hilgetag, C., 1994, “On elementary flux modes in biochemical reaction systems at steady state”, Journal of Biological Systems, 2, 165-182.

[33] Schwartz J. M., and Kanehisa, M., 2005, “A quadratic programming approach for decomposing steady-state metabolic flux distributions onto elementary modes”, Bioinformatics, 21, 204-205.

[34] Willem, M., Pascal, H., Richard, K., Evert, L., Oscar, P., John, O., Michiel, K., and Jeroen, H., 1998, “Making more of milk sugar by engineering lactic acid bacteria”, International Dairy Journal, 8, 227-233.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top