參考文獻
[1] 王培銘,「由簡而繁的系統生物學」,生物資源保存及研究簡訊,第十七卷,第三期,民國九十三年。[2] Bailey, J. E., 1999, “Lessons from metabolic engineering for functional genomics and drug discovery”, Nature Biotchnology, 17, 616–618.
[3] Bongers, R. S., Hoefnagel, M. H., and Kleerebezem, M., 2005, “High-level acetaldehyde production in Lactococcus lactis”, Applied and Environmental Microbiology, 1109-1113.
[4] Bresters, T. W., De Kok, A., and Veeger, C., 1975, “The pyruvate-dehydrogenase complex from Azotobacter vinelandii. 2. Regulation of the activity”, European Journal of Biochemistry, 347-53.
[5] Crow, V. L., and Pritchard, G. G., 1977, “Fructose 1,6-diphosphate-activated L-lactate dehydrogenase from Streptococcus lactis: kinetic properties and factors affecting activation”, Journal of Bacteriology, 82-91.
[6] de Ruyter, P. G., Kuipers, O. P., and de Vos, W. M., 1996, “Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin”, Applied and Environmental Microbiology, 3662-7.
[7] Delgado, J., and Liao, J. C., 1997, “Inverse flux analysis for reduction of acetate excretion in Escherichia coli”, Biotchnology Progress, 13, 361-367.
[8] Hillier, A. J., and Jago, G. R., 1982, “L-Lactate dehydrogenase, FDP-activated, from Streptococcus cremoris”, Methods in Enzymology, 89, 362-367.
[9] Hoefnagel, M., Hugenholtz, J., and Snoep, J. L., 2002, “Time dependent responses of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out experiments”, Molecular Biology Reports, 29, 157-61.
[10] Hoefnagel, M., Starrenburg, M. J., Martens, D. E., Hugenholtz, J., Kleerebezem, M., van Swam, I. I., Bongers, R., Westerhoff, H. V. and Snoep, J. L., 2002, “Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis”, Microbiology, 1003-1013.
[11] Hood L., 2002, “A personal view of molecular technology and how it has changed biology,”Journal of Proteome Research, 399-409.
[12] Hugenholtz, J., and Starrenburg, M., 1992, “Diacetyl production by different strains of Lactococcus lactis ssp. lactis var. diacetylactis and Leuconostoc spp”, Applied Microbiology and Biotechnology, 17-22.
[13] Kacser, H., and Burns, J. A., 1973, “The control of flux In Rate Control of Biological Processes”, Symposium of the Society for Experimental Biology Vol 27, 65-104. Cambridge University Press.
[14] Kanehisa, M., and Bork, P., 2003, “Bioinformatics in the post-sequence era”, Nature Genetics, 33, 305-310.
[15] Kholodenko, B. N., Cascante, M., Hoek, J. B., Westerhoff, H. V., and Schwaber, J., 1998, “Metabolic design: how to engineer a living cell to desired metabolite concentrations and fluxes”, Biotechnology and Bioengineering, 239-247.
[16] Kitano, H., 2002, “Systems biology:a brief overview,” Science, 1662-1664.
[17] Kitano, H., 2001, “Systems biology: toward system-level understanding of biological systems,” In Foundations of Systems Biology (Kitano, H., ed.), 1–36, The MIT Press.
[18] Klamt, S., and Stelling, J., 2003,“Two approaches for metabolic pathway analysis? ”, Trends in Biotechnology, 21, 64-69.
[19] Klamt, S., 2003, “FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps”, Bioinformatics, 19, 261-269.
[20] Klamt, S., and Gilles, E. D., 2004, “Minimal cut sets in biochemical reaction networks”, Bioinformatics, 20, 226-234.
[21] Kurata, H., Masaki, K., Sumida, Y., and Iwasaki, R., 2005, “CADLIVE dynamic simulator: Direct link of biochemical networks to dynamic models”, Genome Research, 15, 590-600.
[22] Lopez de Felipe, F., Kleerebezem, M., De Vos, W. M., and Hugenholtz, J., 1998, “Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase”, Journal of Bacteriology, 180, 3804-3808.
[23] Mendes, P., and Kell, D. B., 1998, “Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation”, Bioinformatics, 14, 869-883.
[24] Palsson, B. Ø., Price, N. D., and Papin, J. A., 2003, “Development of network-based pathway definitions: the need to analyze real metabolic networks”, Trends in Biotechnology, 21, 195-198.
[25] Papin, J. A., Price, N. D., Wiback, S. J., Fell, D. A., and Palsson, B. Ø., 2003, “Metabolic pathways in the post-genome era”, Trends in Biochemical Sciences, 28, 250-258.
[26] Papin, J. A., Stelling, J., Price, N. D., Klamt, S., Schuster, S., and Palsson, B. Ø., 2004, “Comparison of network-based pathway analysis methods”, Trends in Biotechnology, 22, 400-405.
[27] Pfeiffer, T., 1999, “METATOOL: for studying metabolic networks”, Bioinformatics, 15, 251-257.
[28] Platteeuw, C., Hugenholtz, J., Starrenburg, M. J. , Van Alen-Boerrigter, I., and De Vos, W. M., 1995, “Metabolic engineering of Lactococcus lactis: influence of the overproduction of alpha-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions”, Applied and Environmental Microbiology, 61, 3967-3971.
[29] Schilling, C. H., Letscher, D., and Palsson, B. Ø., 2000, “Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective”, Journal of Theoretical Biology, 203, 229-248.
[30] Schuster S., Dandekar T., and Fell, D. A., 1999, “Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering”, Trends in Biotechnology, 17, 53-60.
[31] Schuster S., Fell, D. A., and Dandekar T., 2000, “A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks”, Nature Biotechnology, 18, 326-332.
[32] Schuster, S., and Hilgetag, C., 1994, “On elementary flux modes in biochemical reaction systems at steady state”, Journal of Biological Systems, 2, 165-182.
[33] Schwartz J. M., and Kanehisa, M., 2005, “A quadratic programming approach for decomposing steady-state metabolic flux distributions onto elementary modes”, Bioinformatics, 21, 204-205.
[34] Willem, M., Pascal, H., Richard, K., Evert, L., Oscar, P., John, O., Michiel, K., and Jeroen, H., 1998, “Making more of milk sugar by engineering lactic acid bacteria”, International Dairy Journal, 8, 227-233.