跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.167) 您好!臺灣時間:2025/11/01 04:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宥宇
研究生(外文):You-Yu Lin
論文名稱:幾何外型及轉速對於人工牙植體鑽頭切削行為之影響
論文名稱(外文):Effects of Geometries and Spindle Speeds on the Drilling Behavior of Dental Implant
指導教授:林俊彬林俊彬引用關係陳文斌陳文斌引用關係
指導教授(外文):Chun-Pin LinWeng-Pin Chen
口試委員:李志偉章浩宏林俊彬陳文斌
口試委員(外文):Jyh-Wei LeeHao-Hueng ChangChun-Pin LinWeng-Pin Chen
口試日期:2015-06-07
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
中文關鍵詞:有限元素分析、人工牙植體鑽頭、預成形鑽孔、切削扭矩值、切削反作力值
外文關鍵詞:Finite Element AnalysisDental Implant DrillDental Drilling ProcessDrilling TorqueDrilling Reaction Force
相關次數:
  • 被引用被引用:3
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
伴隨著醫療科技的日新月異以及臨床醫學與日俱進,使得近幾年愈來愈多的缺牙患者選擇人工植牙的方式來治癒缺牙症狀,植牙手術的成功關鍵在於牙植體術後之穩定性與骨整合的情況。而過往的研究多半著重於優化牙植體之設計與改變植體表面材料性質達到提升骨整合之功效。經由相關臨床文獻可得知,植牙手術之預成形鑽孔過程具有影響牙植體術後之骨整合效應。然而,在植牙手術過程中,幾乎少不了使用鑽頭器械來進行切削或鑽孔之行為,也代表著牙植體鑽頭是手術中最不可或缺的工具之一。因此,本研究透過具破壞準則之動態有限元素分析法(finite element method,FEM)與鑽孔力學試驗探討預成形鑽孔過程之力學行為,並且比較不同幾何外型的牙植體鑽頭與轉速對於切削扭值與切削反作用力值以及齒槽骨應變能之影響。
研究過程中選用直徑2.0mm的Nobel Biocare人工牙植體鑽頭作為更改鑽頭幾何外型與鑽孔試驗之樣本。首先,分別使用800rpm、1200rpm、1600rpm、2000rpm四種不同的切削轉速進行預成形鑽孔,並將分析之結果與鑽孔試驗相互驗證,確認有限元素模擬之可行性與可信度。接著,再使用有限元素分析探討牙植體鑽頭其鑽頂角(75°、90°、118°)、螺旋角(13°、23°、33°)、螺旋槽數目(雙螺旋槽、三螺旋槽式)的變化對於切削扭矩值與切削反作用力之影響。
有限元素分析結果顯示,鑽頭轉速增加時,其切削反作用力值有下降之趨勢,反之,切削扭矩值具遞增之現象,並與實際鑽孔試驗的趨勢相符。然而,當鑽頂角為75°時,能最有效降低預成形鑽孔過程中對於齒槽骨所產生的應變能;當螺旋槽數目由雙槽式增加至三槽式時,具有減少切削反作用力之效果;當螺旋角增加時,切削扭矩值與齒槽骨之應變能皆有降低之現象,若不考慮排屑過程之影響,螺旋角為23°、33°較適合應用於臨床手術器械之設計,此資訊可以提供研發新型牙植體鑽頭之參考依據。
The technologies of Medical treatment and clinical surgery have been highly developed in recent years. So, there are more and more patients with missing teeth choose dental implant as their medical treatment. The Key point of executing a successful dental implant surgery is the stability of implant and the compatibility with surrounding osseous structures. Much research has been carried out recently on the optimal design of implant structure and the physical properties on the implant surface in order to enhance the effectiveness of osseointegration. As we know from the literature of clinical surgery, the pre-formed drilling process in implant surgery has a great impact on the osseointegration following insertion. But the dental implant surgery always encounters the preparation process: cutting and drilling, it indicates that the implant drill is considered the most crucial tool in the surgery. In this study, we investigated the influence on the strain energy, drilling torque and drilling reaction force in the alveolar bone under different geometrical shapes of implant drill and spindle speeds.
The experiments were performed with a 2.0mm diameter Nobel Biocare artificial implant drill as our base model of each drilling experimental-set. First, we executed the pre-formed drilling process under four different drilling speeds, 800rpm, 1200rpm, 1600rpm and 2000rpm, respectively. And then, we compared the analytical result with the drilling experiment results to validate the feasibility and reliability of the simulation. After that, finite element analyses were performed on the dental implant drills with three different geometric features, point angle (75°, 90°, 118°), helix angle (13°, 23°, 33°) and dill flute (2-flutes and 3-flutes) to investigate the influence of each experimental-set on the drilling torque and drilling reaction force.
The results of finite element analyses showed that the drilling reaction force decreased and the drilling torque raised gradually when the speed of drill bit raised. So, the results matched well with the results from the drilling experiments. Furthermore, when the point angle is 75°, it can reduce the strain energy generated by the pre-formed drilling process in the alveolar bone effectively. As the drill flute number is 3-flutes, it can reduce the drilling reaction force. The drilling torque and the strain energy in the alveolar bone declined when larger helix angle was used. Without consideration of the influence of bone chip removal, the helix angles of 23°and 33°are more suitable in clinical surgery tool design. In this study, we provided a set of more optimal design parameters for the design of new implant drills.
中文摘要 i
ABSTRACT iii
誌謝 v
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1前言 1
1.2研究背景與文獻回顧 2
1.2.1 牙植體鑽頭 2
1.2.2鑽頭幾何外型參數 3
1.2.3有限元素分析之相關研究 10
1.2.4預成形鑽孔與骨頭組織 13
1.2.5文獻總結 16
1.3 研究目的與動機 16
第二章 基礎理論 17
2.1牙齒結構與牙周組織 17
2.2牙植體鑽頭 20
2.3術前規畫與手術過程 21
2.4骨整合定義 22
2.5破壞理論 22
第三章 材料與方法 24
3.1 研究流程 24
3.2 研究材料與儀器 25
3.2.1 牙植體鑽頭 25
3.2.2 人造假骨試片 26
3.2.3 精密動態鑽孔裝置 27
3.2.4圓鋸切割機 28
3.3 研究方法 29
3.3.1 鑽孔試驗設計 29
3.3.2 有限元素模型建立 32
3.3.3 材料參數設定 35
3.3.4有限元素分析 37
第四章 結果 39
4.1預成形鑽孔力學試驗 39
4.1.1牙植體鑽頭之切削扭矩值 39
4.1.2牙植體鑽頭之切削反作用力值 40
4.2有限元素分析 40
4.2.1預成形鑽孔轉速之影響 41
4.2.2牙植體鑽頭之幾何外型之影響 43
4.3有限元素分析與鑽孔試驗之比較 53
4.3.1牙植體鑽頭之切削反作用力 53
4.3.2牙植體鑽頭之切削扭矩值 55
第五章 討論 58
5.1牙植體鑽頭幾何外型之影響 58
5.1.1鑽頂角對於切削行為之影響 58
5.1.2螺旋角對於切削行為之影響 59
5.1.3螺旋槽數目對於切削行為之影響 60
5.2鑽頭轉速於切削行為之影響 60
5.3研究限制與誤差原因 61
第六章 結論 63
參考文獻 64
[1]P.I. Branemark, B.O. Hansson, R. Adell, U. Breine, J. Lindstrom, O. Hallen and A. Ohman, &;quot;Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period,&;quot; Scandinavian Journal of Plastic and Reconstructive Surgery. vol. 16, pp. 1-132, 1977.
[2]D. Anderson and G.Van Praagh, &;quot;Preliminary investigation of the temperature produced in Burring,&;quot; Brit. DJ 73, pp. 62, 1942.
[3]C.J. Henschel, &;quot;Heat impact of revolving instruments on vital dentin tubules,&;quot; Journal of Dental Research. Vol. 22, pp. 323-333, 1943.
[4]J.P. Walsh and H.F. Symmons, &;quot;A comparison of the heat production and mechanical efficiency of diamond instruments, stones, and burs at 3000 and 60,000 rpm.&;quot; The New Zealand dental journal. Vol. 68, pp. 311, 1972.
[5]C. Stacchi, T. Vercellotti, L. Torelli, F. Furlan, R. Di Lenarda, &;quot;Changes in Implant Stability Using Different Site Preparation Techniques: Twist Drills versus Piezosurgery. A Single‐Blinded, Randomized, Controlled Clinical Trial,&;quot; Clinical implant dentistry and related research. vol. 15, pp. 188-197, 2013.
[6]陳弘哲,以田口法探討鑽頭研磨參數對鑽削性能與鑽孔品質之影響,碩士論文,中原大學機械工程學系,桃園,2004。
[7]C.H. Jacob, J.T. Berry, M.H. Pope, F.T. Hoaglund, &;quot;A study of the bone machining process—drilling.&;quot; Journal of biomechanics. vol. 9,pp. 343-349, 1976.
[8]K.L. Wiggins, and S. Malkin, &;quot;Drilling of bone.&;quot; Journal of biomechanics. vol. 9,pp. 553-559 , 1976.
[9]S. Saha, S. Pal, J.A. Albright, &;quot;Surgical drilling: design and performance of an improved drill.&;quot; Journal of biomechanical engineering. vol. 104,pp. 245-252, 1982.
[10]C. Natali, P. Ingle, J. Dowell, &;quot;Orthopaedic bone drills–can they be improved? Temperature changes near the drilling face.&;quot; Journal of Bone &; Joint Surgery, vol. 78,pp. 357-362, 1996.
[11]S. Karmani, and F. Lam, &;quot;The design and function of surgical drills and K-wires.&;quot; Current Orthopaedics. vol. 18,pp. 484-490, 2004.
[12]G. Augustin, S. Davila, K. Mihoci, T. Udiljak, D.S. Vedrina, A. Antabak, &;quot;Thermal osteonecrosis and bone drilling parameters revisited.&;quot; Archives of Orthopaedic and Trauma Surgery. vol. 128,pp. 71-77, 2008.
[13]N.Bertollo, T.K. Gothelf, W.R. Walsh, &;quot;3-Fluted orthopaedic drills exhibit superior bending stiffness to their 2-fluted rivals: Clinical implications for targeting ability and the incidence of drill-bit failure.&;quot; Injury. vol. 39,pp. 734-741, 2008.
[14]N. Bertollo, H.R. Milne, L.P. Ellis, P.C Stephens, R.M. Gillies, W.R. Walsh, &;quot;A comparison of the thermal properties of 2-and 3-fluted drills and the effects on bone cell viability and screw pull-out strength in an ovine model.&;quot; Clinical Biomechanics. vol. 25,pp. 613-617, 2010.
[15]M. Basiaga, Z. Paszenda, J. Szewczenko, M.A.R.C.I.N. Kaczmarek, &;quot;Influence of surgical drills wear on thermal process generated in bones.&;quot; Acta of bioengineering and biomechanics/Wrocław University of Technology. vol. 15,pp. 19, 2013.
[16]B.K. Hinds and G.M. Treanor, Analysis of stresses in micro-drills using the finite element method. International Journal of Machine Tools &; Manufacture. vol. 40,pp. 1443-1456, 2000.
[17]Y.B. Guo and D.A. Dornfeld, &;quot;Finite element modeling of burr formation process in drilling 304 stainless steel.&;quot; Journal of manufacturing science and engineering. vol. 122,pp. 612-619, 2000.
[18]J.S. Strenkowski, A.J. Shih, J.C. Lin, &;quot;An analytical finite element model for predicting three-dimensional tool forces and chip flow.&;quot;International Journal of Machine Tools and Manufacture. vol. 42,pp. 723-731, 2002.
[19]J.S. Strenkowski, C.C. Hsieh, A.J. Shih, &;quot;An analytical finite element technique for predicting thrust force and torque in drilling.&;quot; International Journal of Machine Tools and Manufacture. vol. 44,pp. 1413-1421, 2004.
[20]E. Bagci and B. Ozcelik, &;quot;Finite element and experimental investigation of temperature changes on a twist drill in sequential dry drilling.&;quot;The International Journal of Advanced Manufacturing Technology. vol. 28,pp. 680-687, 2006.
[21]Y.K. Tu, H.H. Tsai, L.W. Chen, C.C. Huang, Y.C. Chen, L.C. Lin, &;quot;Finite element simulation of drill bit and bone thermal contact during drilling. &;quot;Bioinformatics and Biomedical Engineering, The 2nd International Conference on. IEEE, pp. 1268-1271, 2008.
[22]K. Alam, A.V. Mitrofanov, V.V. Silberschmidt, &;quot;Finite element analysis of forces of plane cutting of cortical bone.&;quot; Computational Materials Science. vol. 46,pp. 738-743, 2009.
[23]F. Gao, X. Tian, S. Liu, B. Li, &;quot;The Simulation on Drilling of Carbon Fiber Reinforced Plastic Composites.&;quot; Proceedings of the 2012 International Conference on Computer Application and System Modeling. Atlantis Press, 2012.
[24]W.A. Lughmani, K. Bouazza-Marouf, I. Ashcroft, &;quot;Finite element modeling and experimentation of bone drilling forces.&;quot; Journal of Physics: Conference Series. Vol. 451. No. 1. IOP Publishing, 2013.
[25]Y.K. Tu, L.W. Chen, J.S. Ciou, C.K. Hsiao, Y.C. Chen, &;quot;Finite element simulations of bone temperature rise during bone drilling based on a bone analog.&;quot; Journal of Medical and Biological Engineering. vol. 33,pp. 269-274, 2013.
[26]Y.H. Hu, Q.Y. Zhang, X.Y. Yue, &;quot;Study on the prediction of drilling forces on cortical bone based on finite element simulation.&;quot; Key Engineering Materials. vol. 589,pp. 157-162, 2014.
[27]A.R. Eriksson and T. Albrektsson, &;quot; Temperature threshold levels for heat inducedbone tissue injury: a vital-microscopic study in the rabbit.&;quot; The Journal of prosthetic dentistry. vol. 50,pp. 101–107, 1983.
[28]A.R. Eriksson and T. Albrektsson, &;quot; The effect of heat on bone regeneration: an experimentalstudy in the rabbit using the bone growth chamber. &;quot; Journal of Oral and Maxillofacial surgery. vol. 42,pp. 705–711, 1984.
[29]F. Watanabe, Y. Tawada, S. Komatsu, Y. Hata, &;quot; Heat distribution in bone during preparation of implant sites: heat analysis by real-time thermography.&;quot; The International journal of oral &; maxillofacial implants. vol. 7,pp. 212–219, 1992.
[30]K.N. Bachus, M.T. Rondina, D.T. Hutchinson, &;quot;The effects of drilling force on cortical temperatures and their duration: an in vitro study.&;quot; Medical engineering &; physics. vol. 22,pp. 685-691, 2000.
[31]M. Sharawy, C.E. Misch, N. Weller, S. Tehemar, &;quot;Heat generation during implant drilling: the significance of motor speed.&;quot; Journal of Oral and Maxillofacial Surgery. vol. 60,pp. 1160-1169, 2002.
[32]S. Kasiri, G. Reilly, D. Taylor, &;quot;Wedge indentation fracture of cortical bone: experimental data and predictions.&;quot; Journal of biomechanical engineering. vol. 132,pp. 081009, 2010.
[33]K. Alam, A.V. Mitrofanov, V.V. Silberschmidt, &;quot;Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone.&;quot; Medical engineering &; physics. vol. 33,pp. 234-239, 2011.
[34]U.T. da Silva Neto, J.C. Joly, S.A. Gehrke, &;quot;Clinical analysis of the stability of dental implants after preparation of the site by conventional drilling or piezosurgery.&;quot; British Journal of Oral and Maxillofacial Surgery. vol. 52,pp. 149-153, 2014.
[35]http://www.24drs.com/special_report/orthodontia/1_2.asp
[36]U. Lekholm and G.A. Zarb, &;quot;Patient selection and preparation, In Branemark PI, Zarb GA, and Albrektsson T,&;quot; Tissue-integrated Prosthsis: Osseointergration in Clinical Dentistry.,pp. 199-209, 1985.
[37]https://www.nobelbiocare.com
[38]http://www.sawbones.com/products/bio/testblocks/solidfoam.aspx.
[39]童元釔,矯正用米你骨釘系統之機械測試及有限元素分析,碩士論文,國立台灣大學牙醫專業學院,台北
[40]http://www.engineeringtoolbox.com/
[41]B.S. Ramamurti, T.E. Orr, C.R. Bragdon, J.D. Lowenstein, M. Jasty, W.H. Harris, &;quot;Factors influencing stability at the interface between a porous surface and cancellous bone: A finite element analysis of a canine in vivo micromotion experiment,&;quot; Journal of Biomedical Materials Research, vol. 36,pp. 274-280, 1997.
[42]Z. Paszenda and M. Basiaga, &;quot;FEM analysis of drills used in bone surgery&;quot;. Archives of Materials Science and Engineering, vol. 36,pp. 103-109, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top