跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.96) 您好!臺灣時間:2026/01/23 07:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馬之雅
研究生(外文):Marzieh Khakifirooz
論文名稱:Mis-specification Analysis of ALT Censored Data Under Generalized Gamma Distribution
指導教授:曾勝滄曾勝滄引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:35
中文關鍵詞:可靠度分析模型誤判分析
外文關鍵詞:Generalized Gamma DistributionLognormalType I censored dataWeibull
相關次數:
  • 被引用被引用:0
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
The performance of reliability inference strongly depends on the modeling of a product’s lifetime distribution. Therefore, the effects of model mis-specification on the product’s lifetime prediction is an interesting research topic. For highly reliable products, this study addresses the effects of model mis-specification in an ALT experiment when the GG3 distribution is either mis-specified as Lognormal or Weibull distribution. We first derive the analytical expressions for the expected log likelihood function when GG3 distribution is either mis-specified as Lognormal or Weibull distribution. Then, the best parameters for the wrong model can be obtained directly via a numerical optimization. Furthermore, we also define the relative bias (RB) and relative variability (RV) to measure the accuracy and precision of the estimated p-th quantile of the product’s lifetime distribution. Both complete and censored ALT models are studied. The results demonstrate that the tail quantiles are significantly overestimated (underestimated) when data wrongly fitted by Lognormal (Weibull) distribution; while the variability of the tail quantiles significantly enlarged when data wrongly fitted by Lognormal (Weibull) distribution. Furthermore, when the sample size and censoring ratio are not large enough, a simulation study shows that the effect of model mis-specification on the tail quantiles is not negligible.
1. Introduction 3
2. A Motivating Example and Problem Formulation 5
2.1. Motivation of this study 5
2.2. Assumptions and Problem Formulation 8
3. The Effects of Model Mis-specification 11
3.1. Asymptotic Distribution of Quasi Maximum Likelihood Estimators 11
3.2. Relative Bias (RB) and Relative Variation (RV) 12
3.3. RB and RV of p-th Quantile under ALT Experiment 12
3.4. An Illustrative Example 16
3.4.1 The Effects of parameter k on the Bias and MSE 19
4. Simulation Study when the Sample Sizes are Finite 21
4.1. The Case of Complete Data 21
4.2. The Case of Censoring Data 24
5. Conclusion and Extension 27
6. Appendix. 28
Appendix 1. The proofs of (3.15) and (3.17) 28
Appendix 2. Asymptotic covariance matrix of mis-treated distributions 29
Appendix 3. The proofs of (3.25) and (3.26) 32
7. References 33

1. J. F. Lawless (1980). Inference in the generalized gamma and log gamma distribution. Technometrics, 22:409–419.
2. J. F. Lawless (1982). Statistical Models and Methods for Lifetime Data. Wiley: New York.
3. J. Lieblein and M. Zelen (1956). Statistical investigation of the fatigue life of deep groove Ball Bearings, Journal of Research of the National Bureau of Standards, 57:273-316.
4. W. Q. Meeker (1984). A comparison of accelerated life test plans for Weibull and Lognormal distributions and Type I censoring, Technometrics, 26:157–172.
5. W. Q. Meeker and L. A. Escobar (1998). Statistical Methods for Reliability Data. Wiley, New York.
6. W. Nelson (1990). Accelerated Testing: Statistical Models, Test Plans, and Data Analyses. Wiley, New York.
7. W. Nelson and W. Q. Meeker (1978). Theory for optimum censored accelerated life tests for Weibull and extreme value distributions, Technometrics, 20:171–177.
8. F. G. Pascual (2005). Maximum likelihood estimation under mis-specified Lognormal and Weibull distribution, Communications in Statistics-Simulation and Computation, 34:503–524.
9. F. G. Pascual (2006). Accelerated life test plans robust to mis-specification of the stress-life relationship, Technometrics, 48:11-25.
10. F. G. Pascual and G. Montepiedra (2005). Lognormal and Weibull Accelerated life test plans under distribution mis-specification, IEEE Transactions on Reliability, 54:43–52.
11. C. Y. Peng and S. T. Tseng (2009). Mis-specification analysis of linear degradation models, IEEE Transactions on Reliability, 58:444-454.
12. Pham and Almhana (1995). The generalized gamma distribution: its hazard rate and stress-strength model. IEEE Transactions on Reliability, 44:392-397.
13. R. L. Prentice (1974). A log gamma model and its maximum likelihood estimation, Biometrika, 61:539-544.
14. E. W. Stacy (1962). A generalization of the gamma distribution, Annals of Mathematical Statistics, 33:1187–1192.
15. C. C. Tsai, S. T. Tseng and N. Balakrishnan (2011). Mis-specification analyses of Gamma and Wiener degradation processes, Journal of Statistical Planning and Inference, 141:3725–3735.
16. H. White (1982). Maximum likelihood estimation of mis-specified models. Econometrica, 50:1–25.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top