|
[1] Robert B. Ash, “Probability and Measure Theory”, 2nd ed., San Diego :Harcourt/ Academic Press,c2000. [2] Francesco Altomare & Michele Campiti, “Korovkin-type Approximation Theory and Its Applications”, Berlin ;W. de Gruyter, New York, 1994. [3] Juan Hernandez Guerra & Daniel Cardenas-Morales, Qualitative Korovkintype results on almost convergence, Monografias del Semin. Matem. Garcia de Galdeano. 27: 2003, 331-336. [4] Chifung Li, Some results about sσ-limit and a representation theorem of sequences in a reflexive Banach space, master dissertation of NCU in Taiwan, 2002. [5] Y.-C. Li, Almost convergence of sequences in a Banach spaces in weak, strong, and absolute senses, Taiwanese journal of mathematics Vol. 10(1) (2006), 209-218. [6] Y.-C. Li and S.-Y. Shaw, Generalized limits and a mean ergodic theorem, Studia Math. 121 1996, 207-219. [7] Sanny Li, Chifung Li, and Yuan-Chuan Li, On σ-limit and aσ-limit in Banach spaces. Taiwanese journal of mathematics Vol. 9(3) (2005) 359-371. [8] G. G. Lorentz, A contribution to the theory of divergent sequence, Acta Math. 80 1948, 167-190. [9] P. P. Korovkin, “Linear Operators and Approximation Theory”, Hindustan Publishing Corp., Delhi, India, 1960. [10] J.A. De Reyna, “Pointwise Convergence of Fourier Series”, New York: Berlin; Springer, c2002. [11] Walter Rudin, “Real and Complex Analysis”, 3rd ed., New York: McGraw-Hill, 1987. [12] Kˆosaku Yosida, ”Functional Analysis”, 6th ed., New York: Springer-Verlag Berlin Heidelberg, 1980. [13] Z. Ditzian, V. Totik, “Moduli of Smoothness“, New York: Berlin; Springer-Verlag, 1987.
|