跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 08:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張峻國
研究生(外文):Chun-Kuo Chang
論文名稱:關於σ-limit的Korovkin型近似定理
論文名稱(外文):Korovkin Type Approximation Theorem Related with σ-limit
指導教授:李源泉李源泉引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:31
中文關鍵詞:近似定理廣義極限弱收歛強收斂
外文關鍵詞:Korovkinapproximation theoremσ-limitaσ-limit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要目的是研究關於廣義極限 σ-limit 的 Korovkin type 近似定理的結果。我們除了給予σ-limit 及 aσ-limit 的一些基本結果。另外對於σ-limit 的 Korovkin type 近似定理,我們分成 pointwise, weakly convergence and norm convergence 三種情形討論。我們也引進 almost positive linear operators 的觀念。
This paper is concerned the results of Korovkin type approximation theorems related
with the generalized limits σ-limit and aσ-limit . We shall also study some basic properties
of σ-limit and aσ-limit . On the other hand, we study the Korovkin type approximation
theorems by departing into the following three situations: pointwise, weak convergence and
norm convergence. We shall introduce a new concept, so called almost positive linear operators.
1.Introduction………………………………………………………1

2.Some basic definition and results…………………………5

3.Pointwise approximation theorems of type σ-limit ………8

4.Approximation theorems of type σ-limit …………………16

5.Pointwise approximation theorems for almost positive
operator sequence…………………………………………………23

6.Approximation theorems for almost positive operator sequence……28

Reference……………………………………………………………31
[1] Robert B. Ash, “Probability and Measure Theory”, 2nd ed., San Diego :Harcourt/
Academic Press,c2000.
[2] Francesco Altomare & Michele Campiti, “Korovkin-type Approximation Theory
and Its Applications”, Berlin ;W. de Gruyter, New York, 1994.
[3] Juan Hernandez Guerra & Daniel Cardenas-Morales, Qualitative Korovkintype
results on almost convergence, Monografias del Semin. Matem. Garcia de
Galdeano. 27: 2003, 331-336.
[4] Chifung Li, Some results about sσ-limit and a representation theorem of sequences
in a reflexive Banach space, master dissertation of NCU in Taiwan, 2002.
[5] Y.-C. Li, Almost convergence of sequences in a Banach spaces in weak, strong, and
absolute senses, Taiwanese journal of mathematics Vol. 10(1) (2006), 209-218.
[6] Y.-C. Li and S.-Y. Shaw, Generalized limits and a mean ergodic theorem, Studia
Math. 121 1996, 207-219.
[7] Sanny Li, Chifung Li, and Yuan-Chuan Li, On σ-limit and aσ-limit in Banach
spaces. Taiwanese journal of mathematics Vol. 9(3) (2005) 359-371.
[8] G. G. Lorentz, A contribution to the theory of divergent sequence, Acta Math. 80
1948, 167-190.
[9] P. P. Korovkin, “Linear Operators and Approximation Theory”, Hindustan Publishing
Corp., Delhi, India, 1960.
[10] J.A. De Reyna, “Pointwise Convergence of Fourier Series”, New York: Berlin;
Springer, c2002.
[11] Walter Rudin, “Real and Complex Analysis”, 3rd ed., New York: McGraw-Hill,
1987.
[12] Kˆosaku Yosida, ”Functional Analysis”, 6th ed., New York: Springer-Verlag Berlin
Heidelberg, 1980.
[13] Z. Ditzian, V. Totik, “Moduli of Smoothness“, New York: Berlin; Springer-Verlag,
1987.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top