跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/26 17:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王澤俊
研究生(外文):WANG TSE-CHUN
論文名稱:到院前心跳停止與慢性病實務研究 – 以新北市為例
論文名稱(外文):A Practical Study on the Relation of Out-of-Hospital Cardiac Arrest and Chronic Diseases – Taking New Taipei City Emergency Medical Service as an Example
指導教授:廖鴻圖廖鴻圖引用關係
指導教授(外文):Liaw Horng-Twu
口試委員:廖鴻圖郭明煌方孝華林建福
口試委員(外文):LIAW, HOMG-TWUGUO, MING-HUANGFANG, XIA-HUALIN, JIANN-FU
口試日期:2016-05-06
學位類別:碩士
校院名稱:世新大學
系所名稱:資訊管理學研究所(含碩專班)
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:63
中文關鍵詞:到院前心跳停止病患Utstein格式Apriori關聯法則決策樹
外文關鍵詞:Out-of-Hospital Cardiac Arrest PatientsUtstein StyleApriori Association RulesDecision Trees
相關次數:
  • 被引用被引用:0
  • 點閱點閱:505
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
發生院前心跳停止的緊急急救患者,大部份預後不如預期。分析患者急救經過,可找出危險因子,並建立風險模型作為到院前救護決策指標。
本文回顧新北市2010年至2011年OHCA Registry Data之患者,並蒐集其案例,分析患者到院前的狀況,將資料以國際烏特斯坦式標準進行資料萃取。繼以回歸探索分析,瞭解變因與OHCA兩小存活率之間的關係及萃取OHCA建模的風險因子(Risk Factor),暨找出OHCA風險因子係數。用Apriori分析OHCA患者慢性病關聯規則,採用決策樹分類演算法建構OHCA風險決策模型。
OHCA之發生與兩小時的存活率風險因子分析發現,罹患慢性病與否顯著相關(P-value=0.001);用Apriori法分析慢性病的相關性,關聯規則多數與心臟病、糖尿病、高血壓高度相關;病患年齡65歲以上死亡風險高;將病患送到第三級緊急責任醫院的存活率是送到非緊急責任醫院的15.75倍,一級緊急責任醫院的2.4倍,二級緊急責任醫院的1.3倍;使用AED的初始心律編碼電擊去顫(VT/VF)比沒有使用風險高;OHAC的外科病患比內科死亡風險高;派遣EMT-P比一般EMT的存活率高。
OHCA的決策樹模型依據將病患分成三組並加入罹患慢性病相關規則,這有助於緊急救護派遣員(Emergency Medical Dispatche, EMD),在OHCA病患在到院前醫療資源分配,這個模型可為救護單位提供實用的的工具,並有助於臨床質量評估,協助研究人員分析不同OHCA病患的醫療策略。

Background:In many emergency cases, patients had cardiac arrest before reaching the hospital and the prognosis are not as well as what medical perspective has expected. This study has analyzed the first aid process used on these emergency patients, to identify the risk factors and established a risk model as pre-hospital decision indicators to increase the patient’s opportunities of survival.
Methods:This study has several segments: reviewing and collecting the OHCA patients with Registry Data of New Taipei city from 2010 to 2011: analyzing and applying International Utestein formula standards for data extraction; using regression analysis to search for the relationship between the variations and OHCA two hour survival rate; applying OHCA modeling to identify risk factors coefficient; using Apriori to analyze the association rules, and adapting decision tree to create a Risk Decision Model.
Results: The correlation chronic diseases: Heart Disease, Diabetes Disease, and Hypertensive Disease have a significant correction on OHCA two hour survival risk factors. Meanwhile, senior citizens have had high risk could not be revive form standard emergency measure.
Conclusions: OHCA Decision tree model helped EMD and rescue units to allocate pre-hospital medical resources and contributes to an accurate clinical quality assessments to assist to analyze medical policy for different OHCA patients.

Acknowledgement I
Abstract II
Table of content III
List of Tables V
List of Figures VI
CHAPTER 1 INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Purpose of the Study 5
1.3 Research Critireas 6
CHAPTER 2 LITERATURE REVIEW 8
2.1 Common causes of OHCA 8
2.2 Success rate of OHCA patients 14
2.3 Prognosis factors of OHCA paitient 16
CHAPTER 3 METHODOLOGY 19
3.1 Utstein Style 19
3.2 OHCA Patients of the Risk Factors 20
3.3 Patients and Study Area 21
3.4 Data Processing 23

CHAPTER 4 RESULT AND DISCUSSIONS 24
4.1 Statistical Analysis 24
4.2 Linear Regression Analysis 24
4.3 Logistic Regression Analysis 25
4.4 Apriori Analysis 25
4.5 Classification and Regression Tree 26
4.6 Results 27
CHAPTER 5 Summary of the Study 32
5.1 Discussion 32
5.2 Conclusions 39
5.3 Suggestions for Future Studies 40
References 43


1.Patel AA, Arabi AR, Alzaeem H, Al Suwaidi JA, Singh R, Al Binali HA. “Cinical Pofile, Mnagement, and Outome in atients with out of hospital cardic arrest: insights from a 20-year regesry.” International Journal of General Medicine. 2014:7 373-381.
2.Davies H, Loosely A, Dolling S, Eve R. Predicting survival in patients admitted to intensive care following out-of-hospital cardiac arrest using the Prognosis after Resuscitation score. Critical Care. 2014;18(Suppl 1):P491.
3.van Genderen ME, Lima A, Akkerhuis M, Bakker J, van Bommel J. Persistent peripheral and microcirculatory perfusion alterations after out-of-hospital cardiac arrest are associated with poor survival*. Critical care medicine. 2012; 40(8):2287-94.
4.Maupain C, Bougouin W, Lamhaut L, Deye N, Diehl J-L, Geri G, et al. The CAHP (Cardiac Arrest Hospital Prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest. European heart journal. 2015:ehv556.
5.Sutton RM, Case E, Brown SP, Atkins DL, Nedkarni VM, et al. A Quanitive Analysis of out-of-hospital pediatric and adolescent resuscitation quality - A report from the ROC epistry-cardiac arrest, 2015: 93 150-157.
6.Lai SC, Li CJ, Hsiao MH, Chou CC, Chang CF, Liu TA, et al. Demographic and Outcome Analysis in Adult Patients with Non-Traumatic Out-of-Hospital Cardiac Arrest in Central Taiwan. Journal of Emergency Medicine. 2009;11(1):1-9.
7.Wu. ZP CY.Yu. A Study on Resuscitative Outcome of Out-of-Hospital Cardiac Arrest Patients-The Implementation Experience of the Fire Bureau of Taipei County. Journal of Crisis Management. 2011;Vol. 8(1): 9-18.
8.Cummins R, Chamberlain B, Hazinski M, Nadkami V, Kloeck W, Kramer E, et al. Recommended guidelines for reviewing, reporting, and conducting research on in-hospital resuscitation: the in hospital ‘Ustein Style’. Annals of Emergency medicine.1997;20 (5): 650-679.
9.Danciu S, Klein L, Hosseini M, Ibrahim L, Coyle B, Kehoe R, et al. A predictive model for survival after in-hospital cardiopulmonary arrest. Resucatation. 2004; 62 (1):35-42.
10.Boller M. Will Models of Naturally Occurring Disease in Animals Reduce the Bench-to-bedside Gap in Biomedical Research? Chin Crit Care Med. 2013; (1):5-7.
11.Aso S-i, Imamura H, Sekiguchi Y, Iwashita T, Hirano R, Ikeda U, et al. Incidence and Mortality of Acute Myocardial Infarction A Population-Based Study Including Patients With Out-of-Hospital Cardiac Arrest. International Heart Journal. 2011; 52(4):197-202.
12.Monitoring ABP, Modifications L. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. 2013.
13.Szpliam D., Webber J, Quan L, Bierens J, Morizor-Leite L, Lamgerdprfer S T, Beerman S, Løfgren B. Creating a drowning chain of survival. Resuscitation. 2014; 85 (9), 1149-1152. doi:10.1016/j.resuscitation.2014.05.034
14.Abrams HC, Moyer PH, Dyer K. A Model of Survival from Out-of-Hospital Cardiac Arrest Using the Boston EMS Arrest Registry. Resuscitation. 2011; 82(8):999-1003.
15.Council AR, Chamberlain DA. Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: the Utstein style. Annals of emergency medicine. 1991; 20(8):861-74.
16.Markusohn E, Sebbag A, Aronson D, Dragu R, Amikam S, Boulus M, et al. Primary percutaneous coronary intervention after out-of-hospital cardiac arrest: patients and outcomes. Hypertension. 2007;12:48.
17.Laish-Farkash A, Matetzky S, Kassem S, Haj-Iahia H, Hod H. Therapeutic hypothermia for comatose survivors after cardiac arrest. The Israel Medical Association journal: IMAJ. 2007; 9(4): 252-6.
18.Bray JE, Stub D, Bernard S, Smith K. Exploring gender differences and the “oestrogen effect” in an Australian out-of-hospital cardiac arrest population. Resuscitation. 2012.
19.Søholm H, Wachtell K, Nielsen SL, Bro-Jeppesen J, Pedersen F, Wanscher M, et al. Tertiary centres have improved survival compared to other hospitals in the Copenhagen area after out-of-hospital cardiac arrest. Resuscitation. 2012.
20.Zhou J, Zhou Y, Cao S, Li S, Wang H, Niu Z, et al. Multivariate logistic regression analysis of postoperative complications and risk model establishment of gastrectomy for gastric cancer: A single-center cohort report. Scandinavian journal of gastroenterology. 2015;51(1):8-15.
21.Han J, Kamber M, Pei J. Data mining: concepts and techniques: concepts and techniques: Elsevier; 2011.
22.Mukhopadhyay A, Maulik U, Bandyopadhyay S. A novel biclustering approach to association rule mining for predicting HIV-1–human protein interactions. Plos One. 2012;7(4):e32289.
23.Win S, Hussain I, Hebl V, Redfield MM. Mortality and Readmissions After Heart Failure Hospitalization in a Community Based Cohort: Estimating Risk Using the Acute Decompensated Heart Failure National Registry (ADHERE) Classification and Regression Tree (CART) Algorithm. Circulation. 2015;132(Suppl 3):A12302-A.
24.Dumas F, Rea TD. Long-term prognosis following resuscitation from out-of-hospital cardiac arrest: role of aetiology and presenting arrest rhythm. Resuscitation. 2012;83(8):1001-5.
25.Husemoen L, Jorgensen T, Borch-Johnsen K, Hansen T, Pedersen O, Linneberg A. The association of alcohol and alcohol metabolizing gene variants with diabetes and coronary heart disease risk factors in a white population. Plos One. 2010;5(8):e11735.
26.Li C-J, Syue Y-J, Lee C-H, Kung C-T, Chou C-C, Chang C-F, et al. Predictors of sustained return of spontaneous circulation in patients with blunt traumatic out-of-hospital cardiac arrest in Taiwan. Life Science Journal. 2013;10(1).
27.Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. The Lancet. 2015.
28.Qiu M, Shen W, Song X, Ju L, Tong W, Wang H, et al. Effects of Prediabetes Mellitus Alone or Plus Hypertension on Subsequent Occurrence of Cardiovascular Disease and Diabetes Mellitus Longitudinal Study. Hypertension. 2015;65(3):525-30.
29.Muntner P, Whittle J, Lynch AI, Colantonio LD, Simpson LM, Einhorn PT, et al. Visit-to-visit variability of blood pressure and coronary heart disease, stroke, heart failure, and mortality: a Cohort Study. Annals of internal medicine. 2015;163(5):329-38.
30.Gonçales PC, Júnior DP, de Oliveira Salgado P, Chianca TCM. Relationship between risk stratification in emergency medical services, mortality and hospital length of stay. Investigación y Educación en Enfermería. 2015;33(3).
31.陳憓儀. 資料探勘技術與到院前心跳停止與病徵關連之研究: 世新大學資訊管理學系碩士論文;2012
32.內政部統計處. http://statis.moi.gov.tw/micst/stmain.jsp?sys=100 2013.
33.衛生福利部統計處統計專區. http://www.mohw.gov.tw/cht/DOS/Statistic_P.aspx?f_list_no=312&fod_list_no=2425&doc_no=13717 2013.
34.全國法規資料庫緊急醫療救護法http://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=L0020045 2013.
35.蔡鴻儒. 到院前心肺停止病患急救成效相關因素探討: 東海大學工業工程與經營資訊學系碩士論文; 2009.
36.簡定國. 非創傷成人病患到院時死亡之預後分析研究: 臺北醫學大學傷害防治學系碩士論文; 2007.
37.龔嘉德. 住院病患在病房發生心跳停止影響急救預後之急救前因子: 高雄醫學大學公共衛生學系碩士論文; 2011.
38.吳榮平 余岐育. 消防機關執行OHCA患者到院緊急救護之調查研究」, 維基管理學刊;第8卷,第1期, 第9-18頁, 2011.
39.鄭銘泰. 台北市緊急救護派遣系統之評估研究: 臺灣大學公共衛生學系碩士論文; 2011.
40.顏瑞昇. 空氣懸浮微粒與到院前心跳停止發生率之相關性研究: 臺灣大學流行病學與預防醫學系碩士論文; 2012.
41.李建國. 宜蘭地區到院前心跳停止病患之分析: 中山大學高階經營學程碩士論文; 2010.
42.顏廷璇. 在一壅塞急診中非外傷病人發生院內心跳停止後心肺復甦結果及相關因素之探討: 長庚大學護理學系碩士論文; 2010.
43.簡慈彥. 桃園縣消防分隊救護反應時間延遲之分析與探討-使用根本原因分析: 中央大學土木工程學系碩士論文; 2011.
44.黃建華、陳文鍾. 心跳停止及復甦急救後症候群之治療新觀念: 醫學新知; 2009.
45.李肇瑞. 外傷性到院前心跳停止患者, 經急救後成功恢復自發性心跳之預測因子分析: 高雄醫學大學公共衛生學系碩士論文; 2011.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊