跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 08:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:歐俐亞
研究生(外文):Aulia Irhamni Fajri
論文名稱:二氧化氯氣體降低家禽飼料中黃麴菌和黃麴毒素B1之研究
論文名稱(外文):A study of gaseous chlorine dioxide to reduce the aflatoxin B1 in poultry feed
指導教授:廖遠東陳和賢陳和賢引用關係
指導教授(外文):Liaw, Ean-TunChen, Ho-Hsien
口試委員:喬長誠李嘉偉廖遠東陳和賢
口試委員(外文):Chyau, Charng-CherngLee, Jai-WeiLiaw, Ean-TunChen, Ho-Hsien
口試日期:2017-06-16
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學國際碩士學位學程
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:129
中文關鍵詞:黃麴毒素B1黃麴菌二氧化氯氣體食品安全家禽飼料
外文關鍵詞:aflatoxin B1Aspergillus flavusgaseous chlorine dioxidefood safetypoultry feed
相關次數:
  • 被引用被引用:1
  • 點閱點閱:328
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
作為食物鏈中的底層生產者的動物飼料,是可將污染物從受污染的飼料轉移至動物組織和生物液體,最終轉移到用於人類消費的產品上的風險。飼料中真菌的腐敗可能是飼料安全和食品安全的問題。黃麴毒素B1(AFB1)是由黃麴菌(Aspergillus flavus)生產的黴菌毒素。國際癌症研究機構(IARC)已證實黃麴毒素B1為第一類致癌物。避免黃麴毒素症(黃麴毒素引起的疾病或疾病)發生有以下幾個策略,包括採收前和採收後技術以及生物性、化學性和物理性方法預防。到目前為止,以往研究並沒有發表過到任何有關二氧化氯(ClO2)氣體處理對動物飼料中黃麴毒素污染的影響。而二氧化氯對殺菌、氧化和抑制三鹵甲烷(THMs)具有顯著的影響。因此,二氧化氯氣體處理對於去除黃麴毒素之污染具有潛在之可行性。此外,二氧化氯氣體在食品工業中作為消毒劑的應用是抑制殺滅微生物並確保食品保鮮,保質期延長,減少食品運送儲存過程中由細菌產生的不良風味。
本研究旨在評估二氧化氯氣體處理降低家禽飼料中黃麴毒素B1污染、減低其飼料中微生物的污染(總生菌、酵母菌和黴菌),以及對其飼料水分含量和水活性之影響。利用AFB1毒素標準溶液,將試驗樣品分成未污染和人為污染的家禽飼料樣品,然後將這些樣品以較高濃度(0
、50、100 和 200 mg/L)和暴露處理時間(0、12、24、48 和 72小時)。這些處理試驗是在氣體暴露室內完成,這屬於是新式電解法產生高純度ClO2的延伸應用消毒設備,在屏東科技大學食品科學系FP302研究室來進行。
在72小時內暴露於二氧化氯氣體濃度為200 mg/L之後,人為污染的飼料樣品的初始AFB1水平(確定為39.85μg/ kg)下降了94.32%。處理前人為污染樣品的水分含量為12.10%,分別以50、100和200 mg/L二氧化氯氣體濃度,暴露於72小時後,依序降至11.30%、10.73% 和9.17%。 在100和200 mg/L氣體濃度處理對飼料水分含量之影響,是有顯著差異(p <0.05)。而二氧化氯氣體處理對飼料水活性之影響,也有顯著差異(p <0.05),暴露於72小時前的初始水活性為0.73 Aw,分別以濃度為50、100和200 mg/L處理後,依序降低至0.67、0.62和0.54 Aw 。在最高濃度(200 mg/L)和最長暴露時間(72 h)下,總生菌、酵母菌與黴菌之菌數變化,皆呈現顯著下降趨勢(p <0.05),分別降低為67.81% 與61.56%。在二氧化氯氣體處理之前,人為污染的家禽飼料樣品中的總生菌為6.73 log CFU/g。在分別以濃度為50、100 和 200 mg/L的氣體ClO2處理72小時後,依序降低至4.76、4.31 與 2.16 log CFU/g,是有顯著性差異(p <0.05)。此外,在50 mg/L氣體ClO2處理前,樣品中的酵母與黴菌之菌數為6.40 log CFU/g,處理後降低至4.59 log CFU/g,具有顯著性差異(p <0.05)。也在100 mg/L濃度處理前後,從6.28 log CFU/g降低至 3.47 log CFU/g,仍具顯著性差異(p <0.05)。對於72小時內最高濃度(200 mg/L)的氣體ClO2,菌數從6.55 log CFU/g降低到2.52 log CFU/g,仍有顯著差異(p <0.05)。
此外,本研究對農場自然污染的家禽飼料進行了研究。有兩種玉米基質樣品,稱為HA和LA。經二氧化氯氣體處理(200 mg/L,24 h)後,天然污染樣品的水活性及水分含量皆遠低於處理前,HA和LA樣品處理前為0.70 Aw 和 0.72 Aw,處理後分別為0.57 Aw 和 0.55 Aw。在HA和LA樣品處理前水分含量為11.53% 和12.30%,經二氧化氯氣體處理後,分別為10.97% 與 10.23%。天然污染的家禽飼料樣品中的微生物計數(總生菌,酵母菌及黴菌)在200 mg/L濃度ClO2和24小時暴露時間的條件下處理後,總生菌數確實有顯著減少之下降趨勢。處理前的HA和LA樣品之總生菌數分別為4.31 log CFU/g 和4.52 log CFU/g,處理後分別降低至3 log CFU/g 和 2.63 log CFU/g。另外,在處理前的HA和LA樣品之酵母和黴菌數量分別為2.47 log CFU/g 和 2.97 log CFU/g,處理後分別降低至0 log CFU/g 和 2.44 log CFU/g。藉由人工和自然污染的家禽飼料樣品的水分含量和水活性的研究結果顯示,經二氧化氯氣體處理前後皆是微生物污染的可耐受安全範圍內。然而,經處理前後之天然污染樣品,其黃麴毒素B1含量仍為0 μg/kg。該研究結果顯示,在特定條件下,透過二氧化氯氣體處理可以在家禽飼料中達到降低AFB1和微生物的含量。
Animal feed is the first link in the food chain, which has the risk on carry-over the contamination from contaminated feeds to the animal tissues and biological fluids, eventually to the products intended for human consumption. Feed spoilage by fungi can be a problem for feed security and food safety. Aflatoxin B1 is the mycotoxins, which is produced by Aspergillus flavus. International Agency for Research on Cancer proved the aflatoxin B1 as a group 1 human carcinogenic. There are several strategies to avoid the aflatoxicosis (the illnesses or diseases caused by aflatoxin), which have been investigated previously, consists of pre- and post- harvest technologies, and into biological, chemical, and physical methods. Thus far, previous research has not observed the effect of ClO2 gas treatments for aflatoxin contamination in animal feed. Chlorine dioxide has the significant effect on sterilization, oxidation, and inhibit trihalomethanes (THMs). Gaseous chlorine dioxide treatment is thus a promising approach to remove aflatoxins contamination.
Furthermore, applications of gaseous chlorine dioxide as a disinfectant in the food industry are the important things to eliminate even kill the microorganisms and ensuring food quality for food preservation, shelf-life extension, reducing the undesirable flavor produced by bacteria during food shipping or transportation and storage.
The present research was conducted to evaluate the effect of gaseous chlorine dioxide in poultry feed on reducing the contamination of aflatoxin B1, eliminating the microbial contamination (aerobic bacteria, yeast, and mold), and measuring the moisture content and water activity. Divided the samples into non-contaminated and artificially contaminated poultry feed samples by AFB1 methanolic solution, then those samples were treated with higher concentration levels (0, 50, 100, 200 mg/L) and time exposure durations (0, 12, 24, 48, 72 hours) at room temperature. These treatments were done inside of the gas chamber, a novel electrolysis method of the Generating High Purity of ClO2 for various disinfection applications, which developed by our laboratory at FP302 Department of Food Science, National Pingtung University of Science and Technology.
The initial AFB1 level in artificially contaminated feed samples, determined as 39.85 µg/kg, decreased by 94.32% after exposure to gaseous chlorine dioxide concentration 200 mg/L during 72 hours. The moisture content of artificially contaminated sample before treatments were 12.10% then becoming lower to 11.30%, 10.73%, and 9.17% after exposure times 72 hours with the concentration of gaseous chlorine dioxide 50, 100, and 200 mg/L, respectively. Those moisture content on 100 and 200 mg/L were significantly different (p<0.05). The gaseous chlorine dioxide treatments on water activity measurement were significantly different (p<0.05), the initial number before exposure to 72 hours were 0.73 Aw, then decreased to 0.67, 0.62 and 0.54 Aw on concentration 50, 100, and 200 mg/L, respectively. At the highest concentration (200 mg/L) and the longest exposure time durations (72 hours), the aerobic bacteria and yeast and mold were significantly reducing (p<0.05) to 67.81% and 61.56%, respectively. Before the gaseous chlorine dioxide treatments, total aerobic bacteria in artificially contaminated poultry feed samples were 6.73 log CFU/g. The number then eliminated and significantly different (p<0.05) to 4.76, 4.31 and 2.16 log CFU/g after treated 72 hours with concentration 50, 100, and 200 mg/L gaseous ClO2. Moreover, the yeast and mold counts in samples before 50 mg/L gaseous ClO2 exposure was 6.40 log CFU/g this number significantly decreased (p<0.05) to 4.59 log CFU/g. As well as 100 mg/L concentration, before and after the treatments were significantly different (p<0.05) 6.28 and 3.47 log CFU/g, respectively. For the highest concentration (200 mg/L) of gaseous ClO2 during 72 hours the number significantly change (p<0.05) from 6.55 log CFU/g to 2.52 CFU/g.
Besides, this study conducted on naturally contaminated poultry feed from the farm. There were two kinds of corn base samples, named HA and LA. The water activity of the naturally contaminated samples after the gaseous chlorine dioxide treatments (200 mg/L, 24 h) were lower than before the treatments, at HA and LA samples before the treatments were 0.70 Aw and 0.72 Aw, then after the treatments were 0.57 Aw and 0.55 Aw. As well as the moisture content, 11.53% and 12.30% to 10.97% and 10.23%, before the treatments on HA and LA samples, and after the gaseous chlorine dioxide treatments, respectively. The microbiology enumeration (aerobic bacteria, yeast, and mold) in naturally contaminated poultry feed samples decreased after the treatments with a condition of 200 mg/L concentration ClO2 and 24 h exposure time duration. The number eliminated from 4.31 log CFU/g and 4.52 log CFU/g to 3 log CFU/g and 2.63 log CFU/g at HA and LA samples before and after treatments, on aerobic plate counts, respectively. Otherwise, the number decreased for the yeast and mold counts 2.47 log CFU/g and 2.97 log CFU/g to 0 log CFU/g and 2.44 log CFU/g at HA and LA samples, respectively. The moisture content and water activity results of the artificially and naturally contaminated poultry feed samples, before and after gaseous chlorine dioxide treatments performed the safe value range from microbial contamination. However, aflatoxin B1 levels of naturally contaminated samples before and after the treatments were 0 µg/kg. The results of this research demonstrated that reduction in the AFB1 level and microbial population could be achieved in poultry feed by gaseous chlorine dioxide under specified conditions.
摘要 I
Abstract IV
Acknowledgement VIII
Table of Contents X
List of Tables XIV
List of Figures XVI
Abbreviations XVIII
1. Introduction 1
1.1 Background 1
1.2 Objectives 6
1.3 Experimental design 7
2. Literature Review 9
2.1 Poultry feed 9
2.1.1 Feed producing principles and requirements 10
2.1.2 Standard of poultry feed 13
2.1.3 Water condition of poultry feed 16
2.2 Gaseous chlorine dioxide 20
2.2.1 Safety level of gaseous chlorine dioxide 22
2.2.2 Antimicrobial effect 24
2.2.3 The effects of gaseous chlorine dioxide 24
2.3 Aspergillus flavus 28
2.4 Aflatoxin 32
2.4.1 Characteristics of aflatoxin 33
2.4.2 Standard for aflatoxin 36
2.4.3 The effects of aflatoxin 38
2.4.4 Technologies to eliminate aflatoxin 41
2.4.5 Analytical method of aflatoxin in animal feed 61
3. Materials and Methods 67
3.1 Feed samples 67
3.2 Equipment 69
3.3 Gaseous chlorine dioxide generator 69
3.4 Aflatoxin B1 contamination 70
3.5 Gaseous chlorine dioxide treatments 70
3.6 Microbiological analysis 71
3.7 Analysis of aflatoxin B1 71
3.8 Analysis of moisture content 72
3.9 Analysis of water activity (Aw) 73
3.10 Statistical analysis 73
4. Results and Discussion 74
4.1 Preparation of gaseous chlorine dioxide 74
4.2 Non-contaminated sample 78
4.3 Effects of gaseous chlorine dioxide treatment on the aflatoxin B1 levels of sample 82
4.4 Moisture content and water activity measurement in gaseous chlorine dioxide treated sample 89
4.5 Aerobic bacteria in poultry feed 94
4.6 Yeast and mold counts in poultry feed 101
4.7 Naturally contaminated poultry feed sample 103
5. Conclusions 106
References 108
Appendices 118
Appendix 1. ANOVA result of AFB1 118
Appendix 2. ANOVA result of aerobic plate count (APC) analysis 119
Appendix 3. ANOVA result of yeast and mold (YM) analysis 120
Appendix 4. ANOVA result of water activity (Aw) 121
Appendix 5. ANOVA result of moisture content 122
Appendix 6. Predicted values of aflatoxin B1 standard peak 123
Appendix 7. Calibration curve of HPLC condition 123
Appendix 8. HPLC chromatogram of the non-contaminated poultry feed sample 124
Appendix 9. HPLC chromatogram of the sterilized non-contaminated poultry feed sample 124
Appendix 10. High-Performance Liquid Chromatography (HPLC) chromatogram of the aflatoxin B1 standard (50 µg/kg) 125
Appendix 11. High-Performance Liquid Chromatography (HPLC) chromatogram of the aflatoxin B1 standard (1 µg/kg) 125
Appendix 12. HPLC chromatogram of the aflatoxin B1 artificially contaminated sample (40 µg/kg) before treatments 126
Appendix 13. HPLC chromatogram of the aflatoxin B1 artificially contaminated sample (40 µg/kg) after treatments 126
Appendix 14. HPLC chromatogram of the aflatoxin B1 naturally contaminated sample before treatments 127
Appendix 15. HPLC chromatogram of the aflatoxin B1 naturally contaminated sample after treatments 128
Biosketch of Author 129
Afsah, H. L., S. Jinap, S. Arzandeh, & H. Mirhosseini. 2011. Optimization of HPLC conditions for quantitative analysis of aflatoxins in contaminated peanut. Food Control, 22(3–4): 381-388.
Aieta, E. M., & J. D. Berg. 1986. A Review of Chlorine Dioxide in Drinking Water Treatment. Journal (American Water Works Association), 78(6): 62-72.
Akande, K., M. Abubakar, T. Adegbola, & S. Bogoro. 2006. Nutritional and health implications of mycotoxins in animal feeds: a review. Pakistan Journal of Nutrition, 5(5): 398-403.
Akbas, M. Y., & M. Ozdemir. 2006. Effect of different ozone treatments on aflatoxin degradation and physicochemical properties of pistachios. Journal of the Science of Food and Agriculture, 86(13): 2099-2104.
Alfredo, D. P., & M. K. Joan. 2005. Chemical Detoxification of Aflatoxins in Food and Feeds Aflatoxin and Food Safety (pp. 543-554): CRC Press.
ATSDR. 2002. Draft Toxicological Profile for Chlorine Dioxide and Chlorite. ATSDR's Toxicological Profiles: CRC Press.
Bahri, S. 1998. Aflatoxin problems in poultry feed and its raw materials in Indonesia. Media Veteriner, 5(2): 7-13.
Betina, V. (1989). Mycotoxins (BioactiVe Molecules, Vol. 9): Elsevier Science Publishers: Amsterdam.
Beuchat, L. R. 2006. Vectors and conditions for preharvest contamination of fruits and vegetables with pathogens capable of causing enteric diseases. British Food Journal, 108(1): 38-53.
Beuchat, L. R., B. V. Nail, B. B. Adler, & M. R. S. Clavero. 1998. Efficacy of Spray Application of Chlorinated Water in Killing Pathogenic Bacteria on Raw Apples, Tomatoes, and Lettuce. Journal of Food Protection, 61(10): 1305-1311.

Bozoğlu, F. 2009. Different mycotoxin inactivation applications and their inactivation mechanisms. Zbornik Matice srpske za prirodne nauke,(117): 27-35.
Bryden, W. L. 2012. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Animal Feed Science and Technology, 173(1–2): 134-158.
Buchanan, R., & L. Bagi. 1997. Effect of water activity and humectant identity on the growth kinetics ofEscherichia coliO157: H7. Food Microbiology, 14(5): 413-423.
Cary, R., & S. Dobson. 2002. Chlorine dioxide (gas).
Chen, M.-T., Y.-H. Hsu, T.-S. Wang, & S.-W. Chien. 2016. Mycotoxin monitoring for commercial foodstuffs in Taiwan. Journal of Food and Drug Analysis, 24(1): 147-156.
Chung, C.-C., T.-C. Huang, C.-H. Yu, F.-Y. Shen, & H.-H. Chen. 2011. Bactericidal effects of fresh-cut vegetables and fruits after subsequent washing with chlorine dioxide. International Proceedings of Chemical, Biological & Environmental Engineering, 9: 107-112.
CODEX, C. A. C. (2013). CODEX STAN 193-1995, General standard for contaminants and toxins in food and feed.
Couri, D., M. S. Abdel-Rahman, & R. J. Bull. 1982. Toxicological effects of chlorine dioxide, chlorite and chlorate. Environmental Health Perspectives, 46: 13-17.
Dalhamn, T. 1957. Chlorine Dioxide. Toxicity in Animal Experiments and Industrial Risks. Arch. Indust. Health, 15(2): 101-107.
De-Alencar, E. R., L. R. D. A. Faroni, N. d. F. F. Soares, W. A. Da Silva, & M. C. Da Silva Carvalho. 2012. Efficacy of ozone as a fungicidal and detoxifying agent of aflatoxins in peanuts. Journal of the Science of Food and Agriculture, 92(4): 899-905.
Derossi, A., C. Severini, & D. Cassi. 2011. Mass Transfer Mechanisms during Dehydration of Vegetable Food: Traditional and Innovative Approach. Advanced Topics in Mass Transfer.
Diao, E., H. Hou, & H. Dong. 2013. Ozonolysis mechanism and influencing factors of aflatoxin B1: A review. Trends in Food Science & Technology, 33(1): 21-26.
Diao, E., C. Shan, H. Hou, S. Wang, M. Li, & H. Dong. 2012. Structures of the Ozonolysis Products and Ozonolysis Pathway of Aflatoxin B1 in Acetonitrile Solution. Journal of Agricultural and Food Chemistry, 60(36): 9364-9370.
Du, J., Y. Han, & R. H. Linton. 2003. Efficacy of chlorine dioxide gas in reducing Escherichia coli O157:H7 on apple surfaces. Food Microbiology, 20(5): 583-591.
Ellis, W. O., J. P. Smith, B. K. Simpson, J. H. Oldham, & P. M. Scott. 1991. Aflatoxins in food: Occurrence, biosynthesis, effects on organisms, detection, and methods of control. Critical Reviews in Food Science and Nutrition, 30(4): 403-439.
FAO. 2001. Manual on the application of the HACCP system in Mycotoxin prevention and control.
FAO. 2010. Good Practices for the Feed Industry.
Fareed, G., M. A. Anjum, & N. Ahmed. 2014. Determination of Aflatoxin and Ochratoxin in poultry feed ingredients and finished feed in humid semi-tropical environment. Journal of Advanced Veterinary and Animal Research, 1(4): 201-207.
Food and Drugs, 29 C.F.R. § PART 178 Indirect Food Additives: Adjuvants, Production Aids, and Sanitizers (2016).
Fukayama, M. Y., H. Tan, W. B. Wheeler, & C. I. Wei. 1986. Reactions of aqueous chlorine and chlorine dioxide with model food compounds. Environmental Health Perspectives, 69: 267-274.
G., L. V. M., F. Devlieghere, P. Ragaert, & J. Debevere. 2007. Shelf-life extension of minimally processed carrots by gaseous chlorine dioxide. International Journal of Food Microbiology, 116(2): 221-227.
Goldblatt, L. 2012. Aflatoxin: scientific background, control, and implications: Elsevier.
Gordon, S. S. 2005. Aflatoxin and Food Safety Aflatoxin and Food Safety (pp. 13-28): CRC Press.
Granados-Chinchilla, F., A. Molina, G. Chavarría, M. Alfaro-Cascante, D. Bogantes-Ledezma, & A. Murillo-Williams. 2017. Aflatoxins occurrence through the food chain in Costa Rica: Applying the One Health approach to mycotoxin surveillance. Food Control.
Greco, M. V., M. L. Franchi, S. L. Rico Golba, A. G. Pardo, & G. N. Pose. 2014. Mycotoxins and mycotoxigenic fungi in poultry feed for food-producing animals. ScientificWorldJournal, 2014: 968215.
Han, Y., J. Floros, R. H. Linton, S. Nielsen, & E. Nelson. 2001. Response surface modeling for the inactivation of Escherichia coli O157: H7 on green peppers (Capsicum annuum L.) by chlorine dioxide gas treatments. Journal of Food Protection®, 64(8): 1128-1133.
Helmut, V., Jan Balej, John E. Bennett, Peter Wintzer, Saeed Akbar Sheikh, Patrizio Gallone, Subramanyan Vasudevan, & Kalle Pelin. 2000. Chlorine Oxides and Chlorine Oxygen Acids Ullmann's Encyclopedia of Industrial Chemistry: Wiley-VCH Verlag GmbH & Co. KGaA.
Hinenoya, A., S. P. Awasthi, N. Yasuda, A. Shima, H. Morino, T. Koizumi, T. Fukuda, T. Miura, T. Shibata, & S. Yamasaki. 2015. Chlorine Dioxide is a Better Disinfectant than Sodium Hypochlorite against Multi-Drug Resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii. Japanese Journal of Infectious Diseases, 68(4): 276-279.
Huwig, A., S. Freimund, O. Käppeli, & H. Dutler. 2001. Mycotoxin detoxication of animal feed by different adsorbents. Toxicology Letters, 122(2): 179-188.
IARC. 2002. Aflatoxins (Vol. 82): Lyon, France: World Health Organization.
Inan, F., M. Pala, & I. Doymaz. 2007. Use of ozone in detoxification of aflatoxin B1 in red pepper. Journal of Stored Products Research, 43(4): 425-429.
Jeng, D. K., & A. G. Woodworth. 1990. Chlorine dioxide gas sterilization under square-wave conditions. Applied and environmental microbiology, 56(2): 514-519.
Jia, X. H., L. Feng, Y. Z. Liu, & L. Q. Zhang. 2017. Oxidation of antipyrine by chlorine dioxide: Reaction kinetics and degradation pathway. Chemical Engineering Journal, 309: 646-654.
John, G., & A. V. Eugenia. 2005. Advances in Sampling and Analysis for Aflatoxins in Food and Animal Feed Aflatoxin and Food Safety (pp. 237-268): CRC Press.
Jouany, J. P. 2007. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Animal Feed Science and Technology, 137(3–4): 342-362.
Kabak, B. 2009. Prevention and management of mycotoxins in food and feed Mycotoxins in Food, Feed and Bioweapons (pp. 201-227): Springer.
Kabak, B., A. D. W. Dobson, & I. Var. 2006. Strategies to Prevent Mycotoxin Contamination of Food and Animal Feed: A Review. Critical Reviews in Food Science and Nutrition, 46(8): 593-619.
Kaczur, J., & D. Cawlfield. 1993. Chlorine oxygen acids and salts (ClO2, HClO2). Kirk-Othmer encyclopedia of chemical technology, 5: 969-991.
Karaca, H., Y. S. Velioglu, & S. Nas. 2010. Mycotoxins: contamination of dried fruits and degradation by ozone. Toxin Reviews, 29(2): 51-59.
Khadre, M., A. Yousef, & J. G. Kim. 2001. Microbiological aspects of ozone applications in food: a review. Journal of food science, 66(9): 1242-1252.
Kimberly, A. S., & A. P. Gary. 2005. Unlocking the Secrets Behind Secondary Metabolism Aflatoxin and Food Safety (pp. 137-166): CRC Press.
Lahouar, A., S. Marin, A. Crespo-Sempere, S. Saïd, & V. Sanchis. 2016. Effects of temperature, water activity and incubation time on fungal growth and aflatoxin B1 production by toxinogenic Aspergillus flavus isolates on sorghum seeds. Revista Argentina de Microbiología, 48(1): 78-85.
López, V. M. G., A. Rajkovic, P. Ragaert, N. Smigic, & F. Devlieghere. 2009. Chlorine dioxide for minimally processed produce preservation: a review. Trends in Food Science & Technology, 20(1): 17-26.
Luo, X., R. Wang, L. Wang, Y. Li, Y. Bian, & Z. Chen. 2014. Effect of ozone treatment on aflatoxin B1 and safety evaluation of ozonized corn. Food Control, 37: 171-176.
Maciorowski, K. G., P. Herrera, F. T. Jones, S. D. Pillai, & S. C. Ricke. 2007. Effects on poultry and livestock of feed contamination with bacteria and fungi. Animal Feed Science and Technology, 133(1–2): 109-136.
Martin, S., W. Jongen, & M. Van Boekel. 2001. A review of Maillard reaction in food and implications to kinetic modeling. Trends in Science and Technology, 11: 364-373.
McKenzie, K. S., A. B. Sarr, K. Mayura, R. H. Bailey, D. R. Miller, T. D. Rogers, W. P. Norred, K. A. Voss, R. D. Plattner, L. F. Kubena, & T. D. Phillips. 1997. Oxidative degradation and detoxification of mycotoxins using a novel source of ozone. Food and Chemical Toxicology, 35(8): 807-820.
Mello, J. P. F. D., & A. M. C. Macdonald. 1997. Mycotoxins. Animal Feed Science and Technology, 69(1-3): 155-166.
Natalia, A. M., H. P. José F, G. C. Ana M, & G. G. Laura. 2015. Aflatoxins in animal feeds: A straightforward and cost-effective analytical method. Food Control, 54: 74-78.
Natarajan, K. R., K. C. Rhee, C. M. Cater, & K. F. Mattil. 1975. Destruction of aflatoxins in peanut protein isolates by sodium hypochlorite. Journal of the American Oil Chemists’ Society, 52(5): 160-163.
Park, S. H., & D. H. Kang. 2015. Antimicrobial effect of chlorine dioxide gas against foodborne pathogens under differing conditions of relative humidity. LWT - Food Science and Technology, 60(1): 186-191.
Park, S. H., L. R. Beuchat, Hoikyung Kim, & J. H. Ryu. 2017. Inactivation of Salmonella enterica in chicken feces on the surface of eggshells by simultaneous treatments with gaseous chlorine dioxide and mild wet heat. Food Microbiology, 62: 202-206.
Pascual, A., I. Llorca, & A. Canut. 2007. Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities. Trends in Food Science & Technology, 18, Supplement 1: S29-S35.
Proctor, A. D., M. Ahmedna, J. V. Kumar, & I. Goktepe. 2004. Degradation of aflatoxins in peanut kernels/flour by gaseous ozonation and mild heat treatment. Food Additives & Contaminants, 21(8): 786-793.
Rahadian, D. 2016. Study on the degradation of aflatoxin B1 in peanut by using chlorine dioxide. (Master Thesis), National Pingtung University of Science and Technology, Taiwan.
Richard, J. L. 2007. Some major mycotoxins and their mycotoxicoses—An overview. International Journal of Food Microbiology, 119(1–2): 3-10.
Samarajeewa, U., A. C. Sen, M. D. Cohen, & C. I. Wei. 1990. Detoxification of Aflatoxins in Foods and Feeds by Physical and Chemical Methods. Journal of Food Protection, 53(6): 489-501.
Samarajeewa, U., A. C. Sen, S. Y. Fernando, E. M. Ahmed, & C. I. Wei. 1991. Inactivation of aflatoxin B1 in corn meal, copra meal and peanuts by chlorine gas treatment. Food and Chemical Toxicology, 29(1): 41-47.
Sara, H. H., & F. C. Kitty. 2005. Risk of Exposure to and Mitigation of Effects of Aflatoxin on Human Health Aflatoxin and Food Safety (pp. 213-236): CRC Press.
Sarah, D. S. 2011. Determining mycotoxins and mycotoxigenic fungi in food and feed: Elsevier.
Schmidt, S. J. 2004. Water and solids mobility in foods. Advances in food and nutrition research, 48: 1-103.
Schmidt, S. J., A. Abdel Hadi, N. Magan, & R. Geisen. 2009. Complex regulation of the aflatoxin biosynthesis gene cluster of Aspergillus flavus in relation to various combinations of water activity and temperature. International Journal of Food Microbiology, 135(3): 231-237.
Sen, A. C., C. I. Wei, S. Y. Fernando, J. Toth, E. M. Ahmed, & G. E. Dunaif. 1988. Reduction of mutagenicity and toxicity of aflatoxin B1 by chlorine gas treatment. Food Chemical Toxicology, 26(9): 745-752.
Seydim, Z. B. G., A. K. Greene, & A. C. Seydim. 2004. Use of ozone in the food industry. LWT - Food Science and Technology, 37(4): 453-460.
Thomas, M., & A. F. B. v. d. Poel. 1996. Physical quality of pelleted animal feed 1. Criteria for pellet quality. Animal Feed Science and Technology, 61(1): 89-112.
Tiwari, B. K., C. S. Brennan, T. Curran, E. Gallagher, P. J. Cullen, & C. P. O' Donnell. 2010. Application of ozone in grain processing. Journal of Cereal Science, 51(3): 248-255.
Torlak, E., I. Akata, F. Erci, & A. T. Uncu. 2016. Use of gaseous ozone to reduce aflatoxin B 1 and microorganisms in poultry feed. Journal of Stored Products Research, 68: 44-49.
Torlak, E., D. Sert, & P. Ulca. 2013. Efficacy of gaseous ozone against Salmonella and microbial population on dried oregano. International Journal of Food Microbiology, 165(3): 276-280.
Trager, W., & L. Stoloff. 1967. Possible reactions for aflatoxin detoxification. Journal of Agricultural and Food Chemistry, 15(4): 679-681.
Trinetta, V., M. T. Morgan, & R. H. Linton. 2010. Use of high-concentration-short-time chlorine dioxide gas treatments for the inactivation of Salmonella enterica spp. inoculated onto Roma tomatoes. Food Microbiology, 27(8): 1009-1015.
Trinetta, V., R. Vaid, Q. Xu, R. Linton, & M. Morgan. 2012. Inactivation of Listeria monocytogenes on ready-to-eat food processing equipment by chlorine dioxide gas. Food Control, 26(2): 357-362.
Trinetta, V., N. Vaidya, R. Linton, & M. Morgan. 2011. A comparative study on the effectiveness of chlorine dioxide gas, ozone gas and e-beam irradiation treatments for inactivation of pathogens inoculated onto tomato, cantaloupe and lettuce seeds. International Journal of Food Microbiology, 146(2): 203-206.
Tsiplakou, E., C. Anagnostopoulos, K. Liapis, S. A. Haroutounian, & G. Zervas. 2014. Determination of mycotoxins in feedstuffs and ruminant׳s milk using an easy and simple LC–MS/MS multiresidue method. Talanta, 130: 8-19.
Veum, T. L. 2004. Feedstuffs: High-Energy Sources. Encyclopedia of Animal Science (Print): 387.
Wacoo, A. P., D. Wendiro, P. C. Vuzi, & J. F. Hawumba. 2014. Methods for Detection of Aflatoxins in Agricultural Food Crops. Journal of Applied Chemistry, 2014: 15.
Werdehoff, K. S., & P. C. Singer. 1987. Chlorine Dioxide Effects on THMFP, TOXFP, and the Formation of Inorganic By-products. Journal American Water Works Association, 79(9): 107-113.
Wilson, S. C., T. L. Brasel, J. M. Martin, C. Wu, L. Andriychuk, D. R. Douglas, L. Cobos, & D. C. Straus. 2005. Efficacy of Chlorine Dioxide as a Gas and in Solution in the Inactivation of Two Trichothecene Mycotoxins. International Journal of Toxicology, 24(3): 181-186.
Wilson, S. C., C. Wu, L. A. Andriychuk, J. M. Martin, T. L. Brasel, C. A. Jumper, & D. C. Straus. 2005. Effect of chlorine dioxide gas on fungi and mycotoxins associated with sick building syndrome. Applied and environmental microbiology, 71(9): 5399-5403.
Yu, C. H., T. C. Huang, C. C. Chung, H. H. Huang, & H. H. Chen. 2014. Application of highly purified electrolyzed chlorine dioxide for tilapia fillet disinfection. ScientificWorldJournal, 2014: 619038.
Yu, C. H., T. C. Huang, C. L. Law, & H. H. Chen. 2015. Effect of Gaseous Chlorine Dioxide Treatment on Strawberries. Journal of International Cooperation, 10(2): 91-108.
Zain, M. E. 2011. Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, 15(2): 129-144.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top