|
[1] Guimaraes, A. M., Stapleton, P., Ji, X., Oliyide, A., Osbourn, A., Pandit, S., Bowles, D., Davis, B., Schatzlein, A., and Yang, M. (2011) Glycosylation enhances selectivity of novobiocin and alters antibacterial mechanism, In Abstract of Papers of the American Chemical Society. [2] Gachon, C. M., Langlois-Meurinne, M., and Saindrenan, P. (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis, Trends Plant Sci. 10, 542-549. [3] Zelder, F., and Tivana, L. (2015) Corrin-based chemosensors for the ASSURED detection of endogenous cyanide, Organic & biomolecular chemistry 13, 14-17. [4] Shimoda, K., Kubota, N., Taniuchi, K., Sato, D., Nakajima, N., Hamada, H., and Hamada, H. (2010) Biotransformation of naringin and naringenin by cultured Eucalyptus perriniana cells, Phytochemistry 71, 201-205. [5] Wright, G. D. (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification, Adv Drug Deliv Rev 57, 1451-1470. [6] Rowland, A., Miners, J. O., and Mackenzie, P. I. (2013) The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification, The international journal of biochemistry & cell biology 45, 1121-1132. [7] Margraf-Schonfeld, S., Bohm, C., and Watzl, C. (2011) Glycosylation affects ligand binding and function of the activating natural killer cell receptor 2B4 (CD244) protein, J. Biol. Chem. 286, 24142-24149. [8] Jaeken, J., and Matthijs, G. (2007) Congenital disorders of glycosylation: a rapidly expanding disease family, Annu Rev Genomics Hum Genet 8, 261-278. [9] Friend, D. R., and Chang, G. W. (1984) A colon-specific drug-delivery system based on drug glycosides and the glycosidases of colonic bacteria, J. Med. Chem. 27, 261-266. [10] Sinha, V., and Kumria, R. (2001) Colonic drug delivery: prodrug approach, Pharm. Res. 18, 557-564. [11] Nag, S. A., Qin, J., Wang, W., Wang, M.-H., Wang, H., and Zhang, R. (2012) Ginsenosides as anticancer agents: in vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action, Front. Pharmacol. 3, 25. [12] Oliveira-Brett, A. M., and Diculescu, V. C. (2004) Electrochemical study of quercetin–DNA interactions: Part II. In situ sensing with DNA biosensors, Bioelectrochemistry 64, 143-150. [13] Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., and Onoue, S. (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications, Int. J. Pharm. 420, 1-10. [14] Zhang, J. A., Anyarambhatla, G., Ma, L., Ugwu, S., Xuan, T., Sardone, T., and Ahmad, I. (2005) Development and characterization of a novel Cremophor® EL free liposome-based paclitaxel (LEP-ETU) formulation, Eur. J. Pharm. Biopharm. 59, 177-187. [15] Morand, C., Manach, C., Crespy, V., and Remesy, C. (2000) Quercetin 3-O-β-glucoside is better absorbed than other quercetin forms and is not present in rat plasma, Free Radic. Res. 33, 667-676. [16] de Graaf, M., Pinedo, H. M., Quadir, R., Haisma, H. J., and Boven, E. (2003) Cytosolic β-glycosidases for activation of glycoside prodrugs of daunorubicin, Biochem. Pharmacol. 65, 1875-1881. [17] Nolen, H., 3rd, Fedorak, R., and Frient, D. (1995) Budesonide‐β‐D‐glucuronide: A potential prodrug for treatment of ulcerative colitis, J. Pharm. Sci. 84, 677-681. [18] Fedorak, R. N., Haeberlin, B., Empey, L. R., Cui, N., Nolen, H., Jewell, L. D., and Friend, D. R. (1995) Colonic delivery of dexamethasone from a prodrug accelerates healing of colitis in rats without adrenal suppression, Gastroenterology 108, 1688-1699. [19] Panda, S., and Kar, A. (2007) Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside, BioFactors 31, 201-210. [20] Ke, M., Hu, X.-Q., Ouyang, J., Dai, B., and Xu, Y. (2012) The effect of astragalin on the VEGF production of cultured Müller cells under high glucose conditions, Bio-Med. Mater. Eng. 22, 113-119. [21] Day, A. J., Gee, J. M., DuPont, M. S., Johnson, I. T., and Williamson, G. (2003) Absorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter, Biochem. Pharmacol. 65, 1199-1206. [22] Bai, Y., Mao, Q. Q., Qin, J., Zheng, X. Y., Wang, Y. B., Yang, K., Shen, H. F., and Xie, L. P. (2010) Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivo, Cancer Sci. 101, 488-493. [23] Razavi, S. M., Zahri, S., Zarrini, G., Nazemiyeh, H., and Mohammadi, S. (2009) Biological activity of quercetin-3-O-glucoside, a known plant flavonoid, Bioorganicheskaia khimiia 35, 414-416. [24] Discher, S., Burse, A., Tolzin-Banasch, K., Heinemann, S. H., Pasteels, J. M., and Boland, W. (2009) A versatile transport network for sequestering and excreting plant glycosides in leaf beetles provides an evolutionary flexible defense strategy, ChemBioChem 10, 2223-2229. [25] Shipkova, M., Armstrong, V. W., Oellerich, M., and Wieland, E. (2003) Acyl glucuronide drug metabolites: toxicological and analytical implications, Ther. Drug Monit. 25, 1-16. [26] Yang, F., Lian, G., and Yu, B. (2010) Synthesis of raphanuside, an unusual oxathiane-fused thioglucoside isolated from the seeds of Raphanus sativus L, Carbohydr. Res. 345, 309-314. [27] Jaki, B., Sticher, O., Veit, M., Fröhlich, R., and Pauli, G. F. (2002) Evaluation of glucoiberin reference material from Iberis amara by spectroscopic fingerprinting, J. Nat. Prod. 65, 517-522. [28] Šardzík, R., Both, P., and Flitsch, S. L. (2011) Post-translational modifications: S-linked sugars lost and found, Nat. Chem. Biol. 7, 69-70. [29] Gao, Y., Zhao, G., Liu, W., Wang, Y., Xu, W., and Wang, J. (2010) Thiadiazole‐based thioglycosides as sodium‐glucose co‐transporter 2 (SGLT2) inhibitors, Chin. J. Chem . 28, 605-612. [30] Hirohara, S., Obata, M., Alitomo, H., Sharyo, K., Ando, T., Tanihara, M., and Yano, S. (2009) Synthesis, photophysical properties and sugar-dependent in vitro photocytotoxicity of pyrrolidine-fused chlorins bearing S-glycosides, J. Photochem. Photobiol. B 97, 22-33. [31] MacDougall, J. M., Zhang, X. D., Polgar, W. E., Khroyan, T. V., Toll, L., and Cashman, J. R. (2004) Design, chemical synthesis, and biological evaluation of thiosaccharide analogues of morphine- and codeine-6-glucuronide, J. Med. Chem. 47, 5809-5815. [32] Mohorko, E., Glockshuber, R., and Aebi, M. (2011) Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation, J. Inherit. Metab. Dis. 34, 869-878. [33] Lu, C., Bai, L., and Shen, Y. (2004) A novel amide N-glycoside of ansamitocins from Actinosynnema pretiosum, J. Antibiot. (Tokyo) 57, 348-350. [34] Wang, W., Rattananakin, P., and Goekjian, P. G. (2003) Synthesis of N‐glycoside analogs via thionolactones, J. Carbohydr. Chem. 22, 743-751. [35] Eichholzer, J., MacLeod, J., and Summons, R. (1978) Studies of the thermal N 3 to N 9 rearrangement of the 3-β-D-Glucoside of the cytokinin, 6-benzylaminopurine, Aust. J. Chem. 31, 893-899. [36] Nandi, V., and Soine, W. H. (1997) HPLC analysis for amobarbital N-glycosides in urine, J. Pharm. Biomed. Anal. 15, 1187-1195. [37] Tawara, J. N., Johnston, J. J., and Goodall, M. J. (1996) Degradation of 3-chloro-p-toluidine hydrochloride in watermelon bait. Identification and chemical characterization of novel N-glucoside and oxopropanimine, J. Agric. Food Chem. 44, 3983-3988. [38] Martin, G. D., Tan, L. T., Jensen, P. R., Dimayuga, R. E., Fairchild, C. R., Raventos-Suarez, C., and Fenical, W. (2007) Marmycins A and B, cytotoxic pentacyclic C-glycosides from a marine sediment-derived actinomycete related to the genus Streptomyces, J. Nat. Prod. 70, 1406-1409. [39] Nomura, S., Sakamaki, S., Hongu, M., Kawanishi, E., Koga, Y., Sakamoto, T., Yamamoto, Y., Ueta, K., Kimata, H., and Nakayama, K. (2010) Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus, J. Med. Chem. 53, 6355-6360. [40] Mydock, L. K., and Demchenko, A. V. (2010) Mechanism of chemical O-glycosylation: from early studies to recent discoveries, Org Biomol Chem 8, 497-510. [41] Van Den Broek, L. A., and Voragen, A. G. (2008) Bifidobacterium glycoside hydrolases and (potential) prebiotics, Innovative Food Science & Emerging Technologies 9, 401-407. [42] Zhou, M., and Thorson, J. S. (2011) Asymmetric enzymatic glycosylation of mitoxantrone, Org. Lett. 13, 2786-2788. [43] Jung, C. M., Heinze, T. M., Schnackenberg, L. K., Mullis, L. B., Elkins, S. A., Elkins, C. A., Steele, R. S., and Sutherland, J. B. (2009) Interaction of dietary resveratrol with animal‐associated bacteria, FEMS Microbiol. Lett. 297, 266-273. [44] Aumiller, J. J., Mabashi-Asazuma, H., Hillar, A., Shi, X., and Jarvis, D. L. (2012) A new glycoengineered insect cell line with an inducibly mammalianized protein N-glycosylation pathway, Glycobiology 22, 417-428. [45] Buchheit, D., Dragan, C. A., Schmitt, E. I., and Bureik, M. (2011) Production of ibuprofen acyl glucosides by human UGT2B7, Drug Metab. Dispos. 39, 2174-2181. [46] Campbell, J. A., Davies, G. J., Bulone, V., and Henrissat, B. (1997) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities, Biochem. J. 326, 929. [47] Breton, C., Fournel-Gigleux, S., and Palcic, M. M. (2012) Recent structures, evolution and mechanisms of glycosyltransferases, Curr. Opin. Struct. Biol. 22, 540-549. [48] Lairson, L., Henrissat, B., Davies, G., and Withers, S. (2008) Glycosyltransferases: structures, functions, and mechanisms, Biochemistry 77, 521. [49] Kudo, F., Kasama, Y., Hirayama, T., and Eguchi, T. (2007) Cloning of the pactamycin biosynthetic gene cluster and characterization of a crucial glycosyltransferase prior to a unique cyclopentane ring formation, The Journal of antibiotics 60, 492-503. [50] Mulichak, A. M., Losey, H. C., Walsh, C. T., and Garavito, R. M. (2001) Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics, Structure 9, 547-557. [51] Wang, H., and van der Donk, W. A. (2011) Substrate selectivity of the sublancin S-glycosyltransferase, J. Am. Chem. Soc. 133, 16394-16397. [52] Green, M. D., King, C. D., Mojarrabi, B., Mackenzie, P. I., and Tephly, T. R. (1998) Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3, Drug Metab. Disposition 26, 507-512. [53] Gantt, R. W., Goff, R. D., Williams, G. J., and Thorson, J. S. (2008) Probing the aglycon promiscuity of an engineered glycosyltransferase, Angew. Chem. Int. Ed. Engl. 47, 8889-8892. [54] Wang, X. (2009) Structure, mechanism and engineering of plant natural product glycosyltransferases, FEBS Lett. 583, 3303-3309. [55] Itaaho, K., Uutela, P., Kostiainen, R., Radominska-Pandya, A., and Finel, M. (2008) Dopamine is a low affinity and high specificity substrate for the human UDP-glucuronosyltransferase 1A10, Drug Metab. Disposition. [56] Dubois, S. G., Beaulieu, M., Lévesque, É., Hum, D. W., and Bélanger, A. (1999) Alteration of human UDP-glucuronosyltransferase UGT2B17 regio-specificity by a single amino acid substitution, J. Mol. Biol. 289, 29-39. [57] Lim, E. K., Ashford, D. A., Hou, B., Jackson, R. G., and Bowles, D. J. (2004) Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides, Biotechnol. Bioeng. 87, 623-631. [58] Hyung Ko, J., Gyu Kim, B., and Joong-Hoon, A. (2006) Glycosylation of flavonoids with a glycosyltransferase from Bacillus cereus, FEMS Microbiol. Lett. 258, 263-268. [59] Ahn, J. H., Chong, Y. H., Joe, E. J., and Ri, J. N. (2010) Change of Bacillus cereus flavonoid O-triglucosyltransferase into flavonoid O-monoglucosyltransferase by error-prone polymerase chain reaction, Journal of microbiology and biotechnology 20, 1393-1396. [60] Cheng, A.-L., Hsu, C.-H., Lin, J.-K., Hsu, M.-M., Ho, Y.-F., Shen, T.-S., Ko, J.-Y., Lin, J.-T., Lin, B.-R., and Ming-Shiang, W. (2000) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions, Anticancer Res. 21, 2895-2900. [61] Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., Chen, P. P., Kayed, R., Glabe, C. G., and Frautschy, S. A. (2005) Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo, J. Biol. Chem. 280, 5892-5901. [62] Parvathy, K., Negi, P., and Srinivas, P. (2009) Antioxidant, antimutagenic and antibacterial activities of curcumin-β-diglucoside, Food Chem. 115, 265-271. [63] Shrikanth Gadad, B., K Subramanya, P., Pullabhatla, S., S Shantharam, I., and KS, R. (2012) Curcumin-glucoside, a novel synthetic derivative of curcumin, inhibits α-synuclein oligomer formation: relevance to Parkinson's disease, Curr. Pharm. Des. 18, 76-84. [64] Stege, P. W., Messina, G. A., Bianchi, G., and Olsina, R. A. (2010) Determination of the β-glucosidase activity in different soils by pre capillary enzyme assay using capillary electrophoresis with laser-induced fluorescence detection, Journal of fluorescence 20, 517-523. [65] Burke, D. G., Heales, S. J., and Vellodi, A. (2015) Lysosomal β-glucosidase (GBA1) and non-lysosomal β-glucosidase (GBA2): Potential involvement in the pathogenesis of Gaucher disease/Parkinson disease, Mol. Genet. Metab. 114, S26. [66] Sweeney, A. T., Tangpricha, V., Weinberg, J., Malabanan, A. O., Chimeh, F. N., and Holick, M. F. (2006) Comparison of the effects of a new conjugated oral estrogen, estradiol-3-beta-glucoside, with oral micronized 17-beta-estradiol in postmenopausal women, Transl. Res. 148, 164-170. [67] Kim, H., Sablin, S. O., and Ramsay, R. R. (1997) Inhibition of monoamine oxidase A by β-carboline derivatives, Arch. Biochem. Biophys. 337, 137-142. [68] Lee, C. S., Han, E. S., Jang, Y. Y., Han, J. H., Ha, H. W., and Kim, D. E. (2000) Protective effect of harmalol and harmaline on MPTP neurotoxicity in the mouse and dopamine‐induced damage of brain mitochondria and PC12 cells, J. Neurochem. 75, 521-531. [69] Cho, J. H., Jeon, Y.-J., Park, S.-M., Shin, J.-C., Lee, T.-H., Jung, S., Park, H., Ryu, J., Chen, H., and Dong, Z. (2015) Multifunctional effects of honokiol as an anti-inflammatory and anti-cancer drug in human oral squamous cancer cells and xenograft, Biomaterials 53, 274-284. [70] Ikeda, K., Sakai, Y., and Nagase, H. (2003) Inhibitory effect of magnolol on tumour metastasis in mice, Phytother. Res. 17, 933-937. [71] Xu, Q., Yi, L.-T., Pan, Y., Wang, X., Li, Y.-C., Li, J.-M., Wang, C.-P., and Kong, L.-D. (2008) Antidepressant-like effects of the mixture of honokiol and magnolol from the barks of Magnolia officinalis in stressed rodents, Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 715-725. [72] Yang, L., Wang, Z., Lei, H., Chen, R., Wang, X., Peng, Y., and Dai, J. (2014) Neuroprotective glucosides of magnolol and honokiol from microbial-specific glycosylation, Tetrahedron 70, 8244-8251. [73] Funayama, M., Arakawa, H., Yamamoto, R., Nishino, T., Shin, T., and Murao, S. (1995) Effects of α-and β-arbutin on activity of tyrosinases from mushroom and mouse melanoma, Biosci., Biotechnol., Biochem. 59, 143-144. [74] Bae, E.-J., Yang, N. Y., Lee, C., Lee, H.-J., Kim, S., Sardi, S. P., and Lee, S.-J. (2015) Loss of glucocerebrosidase 1 activity causes lysosomal dysfunction and α-synuclein aggregation, Exp. Mol. Med. 47, e153. [75] Lokeshwar, V. B., Lopez, L. E., Munoz, D., Chi, A., Shirodkar, S. P., Lokeshwar, S. D., Escudero, D. O., Dhir, N., and Altman, N. (2010) Antitumor activity of hyaluronic acid synthesis inhibitor 4-methylumbelliferone in prostate cancer cells, Cancer Res. 70, 2613-2623. [76] Chen, Y., Zhou, J., Wang, H., Xia, Y., Yang, Z. Y., and Xia, P. (2008) Synthesis and anti-HBV activity of S-substituted 7-mercapto-4-methylcoumarin analogs, Chin. Chem. Lett. 19, 925-927. [77] Thapa, M., Kim, Y., Desper, J., Chang, K.-O., and Hua, D. H. (2011) Synthesis and antiviral activity of substituted quercetins, Bioorganic & medicinal chemistry letters. [78] Granado-Serrano, A. B., Martín, M. Á., Bravo, L., Goya, L., and Ramos, S. (2012) Quercetin attenuates TNF-induced inflammation in hepatic cells by inhibiting the NF-κB pathway, Nutr. Cancer 64, 588-598. [79] Perez-Vizcaino, F., and Duarte, J. (2010) Flavonols and cardiovascular disease, Mol. Aspects Med. 31, 478-494. [80] Spagnuolo, C., Russo, M., Bilotto, S., Tedesco, I., Laratta, B., and Russo, G. L. (2012) Dietary polyphenols in cancer prevention: the example of the flavonoid quercetin in leukemia, Ann. N. Y. Acad. Sci. 1259, 95-103. [81] Mulholland, P., Ferry, D., Anderson, D., Hussain, S., Young, A., Cook, J., Hodgkin, E., Seymour, L., and Kerr, D. (2001) Pre-clinical and clinical study of QC12, a water-soluble, pro-drug of quercetin, Ann. Oncol. 12, 245-248. [82] Russo, M., Spagnuolo, C., Tedesco, I., Bilotto, S., and Russo, G. L. (2012) The flavonoid quercetin in disease prevention and therapy: facts and fancies, Biochem. Pharmacol. 83, 6-15. [83] Murota, K., Matsuda, N., Kashino, Y., Fujikura, Y., Nakamura, T., Kato, Y., Shimizu, R., Okuyama, S., Tanaka, H., and Koda, T. (2010) α-Oligoglucosylation of a sugar moiety enhances the bioavailability of quercetin glucosides in humans, Arch. Biochem. Biophys. 501, 91-97. [84] Makris, D. P., and Rossiter, J. T. (2002) An investigation on structural aspects influencing product formation in enzymic and chemical oxidation of quercetin and related flavonols, Food Chem. 77, 177-185. [85] Kim, M. K., Park, K.-S., Lee, C., Park, H. R., Choo, H., and Chong, Y. (2010) Enhanced stability and intracellular accumulation of quercetin by protection of the chemically or metabolically susceptible hydroxyl groups with a pivaloxymethyl (POM) promoiety, J. Med. Chem. 53, 8597-8607. [86] Fremont, L. (2000) Biological effects of resveratrol, Life Sci. 66, 663-673. [87] Richard, T., Pawlus, A. D., Iglésias, M. L., Pedrot, E., Waffo‐Teguo, P., Mérillon, J. M., and Monti, J. P. (2011) Neuroprotective properties of resveratrol and derivatives, Ann. N. Y. Acad. Sci. 1215, 103-108. [88] Regev-Shoshani, G., Shoseyov, O., Bilkis, I., and Kerem, Z. (2003) Glycosylation of resveratrol protects it from enzymic oxidation, Biochem. J 374, 157-163. [89] Nandi, S., Letham, D., Palni, L., Wong, O., and Summons, R. (1989) 6-Benzylaminopurine and its glycosides as naturally occurring cytokinins, Plant Sci. 61, 189-196. [90] Doležal, K., Popa, I., Kryštof, V., Spíchal, L., Fojtíková, M., Holub, J., Lenobel, R., Schmülling, T., and Strnad, M. (2006) Preparation and biological activity of 6-benzylaminopurine derivatives in plants and human cancer cells, Biorg. Med. Chem. 14, 875-884. [91] Frebort, I., Kowalska, M., Hluska, T., Frebortova, J., and Galuszka, P. (2011) Evolution of cytokinin biosynthesis and degradation, J. Exp. Bot. 62, 2431-2452. [92] Ku, E. C., Lee, W., Kothari, H. V., and Scholer, D. W. (1986) Effect of diclofenac sodium on the arachidonic acid cascade, The American journal of medicine 80, 18-23. [93] Swart, H., Breytenbach, J. C., Hadgraft, J., and du Plessis, J. (2005) Synthesis and transdermal penetration of NSAID glycoside esters, Int. J. Pharm. 301, 71-79. [94] Linder, A. E., Poli, A., and de Lima e Silva, A. K. (2013) The effect of drugs that alter serotonin homeostasis in rat erectile function, The FASEB Journal 27, lb604. [95] Stachulski, A. V., and Meng, X. (2013) Glucuronides from metabolites to medicines: a survey of the in vivo generation, chemical synthesis and properties of glucuronides, Nat. Prod. Rep. 30, 806-848. [96] Jove, R., Nam, S., and Skaltsounis, A.-L. (2013) Indirubin derivatives and uses thereof in treating chronic myelogenous leukemia. US20130210834 A1. [97] Chen, Z.-Q., Liu, Y., Zhao, J.-H., Wang, L., and Feng, N.-P. (2012) Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system, International journal of nanomedicine 7, 1115. [98] Silva, I. D., Gaspar, J., Da Costa, G. G., Rodrigues, A., Laires, A., and Rueff, J. (2000) Chemical features of flavonols affecting their genotoxicity. Potential implications in their use as therapeutical agents, Chem.-Biol. Interact. 124, 29-51. [99] M Calderon-Montano, J., Burgos-Moron, E., Pérez-Guerrero, C., and López-Lázaro, M. (2011) A review on the dietary flavonoid kaempferol, Mini Rev. Med. Chem. 11, 298-344. [100] Soromou, L. W., Chen, N., Jiang, L., Huo, M., Wei, M., Chu, X., Millimouno, F. M., Feng, H., Sidime, Y., and Deng, X. (2012) Astragalin attenuates lipopolysaccharide-induced inflammatory responses by down-regulating NF-κB signaling pathway, Biochem. Biophys. Res. Commun. 419, 256-261. [101] Ni, Z., Zhang, Q., Qian, J., and Wang, L. (1999) Effect of Astragalin on matrix secretion and beta 1 integrin mRNA expression in human mesangial cells, Chin. Med. J. 112, 1063-1067. [102] Ong, K. C., and Khoo, H.-E. (1997) Biological effects of myricetin, General Pharmacology: The Vascular System 29, 121-126. [103] Sawruk, S. (1995) Method for treatment of osteoporosis. US5478579 A. [104] Hiermann, A., Schramm, H., and Laufer, S. (1998) Anti-inflammatory activity of myricetin-3-O-β-D-glucuronide and related compounds, Inflamm. Res. 47, 421-427. [105] Kleczkowski, L. A., Kunz, S., and Wilczynska, M. (2010) Mechanisms of UDP-glucose synthesis in plants, Crit. Rev. Plant Sci. 29, 191-203. [106] Terasaka, K., Mizutani, Y., Nagatsu, A., and Mizukami, H. (2012) In situ UDP-glucose regeneration unravels diverse functions of plant secondary product glycosyltransferases, FEBS Lett. 586, 4344-4350. [107] Son, M. H., Kim, B.-G., Kim, D. H., Jin, M., Kim, K., and Ahn, J.-H. (2009) Production of flavonoid O-glucoside using sucrose synthase and flavonoid O-glucosyltransferase fusion protein, J. Microbiol. Biotechnol. 19, 709-712. [108] Zheng, Y., Anderson, S., Zhang, Y., and Garavito, R. M. (2011) The structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications, J. Biol. Chem. 286, 36108-36118. [109] Römer, U., Schrader, H., Günther, N., Nettelstroth, N., Frommer, W. B., and Elling, L. (2004) Expression, purification and characterization of recombinant sucrose synthase 1 from Solanum tuberosum L. for carbohydrate engineering, J. Biotechnol. 107, 135-149. [110] Barratt, D. P., Barber, L., Kruger, N. J., Smith, A. M., Wang, T. L., and Martin, C. (2001) Multiple, distinct isoforms of sucrose synthase in pea, Plant Physiol. 127, 655-664. [111] Curatti, L., Porchia, A. C., Herrera-Estrella, L., and Salerno, G. L. (2000) A prokaryotic sucrose synthase gene (susA) isolated from a filamentous nitrogen-fixing cyanobacterium encodes a protein similar to those of plants, Planta 211, 729-735. [112] Lee, C. M., Lu, C., Lu, W. M., and Chen, P.-C. (1995) Removal of nitrogenous compounds from wastewaters using immobilized cyanobacteria Anabaena CH3, Environ. Technol. 16, 701-713. [113] Chen, P.-C., Fan, S.-H., Chiang, C.-L., and Lee, C.-M. (2008) Effect of growth conditions on the hydrogen production with cyanobacterium Anabaena sp. strain CH3, Int. J. Hydrogen Energy 33, 1460-1464. [114] Wu, R., Diez, M. D. A., Figueroa, C. M., Machtey, M., Iglesias, A. A., Ballicora, M. A., and Liu, D. (2015) The crystal structure of Nitrosomonas europaea sucrose synthase reveals critical conformational changes and insights into the sucrose metabolism in prokaryotes, J. Bacteriol., JB. 00110-00115. [115] 陳雅惠. (2013) 枯草桿菌醣基轉移酶 BcGT-1 中 Phe240, Phe132 及 Phe138 胺基酸殘基對類黃酮醣基化之影響, pp 1-82, 交通大學應用化學系學位論文. [116] Hsieh, Y. C., Chiu, H. H., Huang, Y. C., Fun, H. K., Lu, C. Y., Li, Y. K., and Chen, C. J. (2014) Purification, crystallization and preliminary X-ray crystallographic analysis of glycosyltransferase-1 from Bacillus cereus, Acta Crystallogr F Struct Biol Commun 70, 1228-1231. [117] Trott, O., and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31, 455-461. [118] 許嘉郡. (2013) 豌豆蔗糖合成酶的表現, 性質研究和應用, pp 1-87, 交通大學應用化學系學位論文. [119] 范家瑛. (2007) 幾丁質結合蛋白的應用, 交通大學理學院應用科技學程學位論文. [120] 傅于烈. (2011) 枯草桿菌 UDP-glycosyltransferase 之受質專一性及應用研究, pp 1-92, 交通大學應用化學系學位論文. [121] Bate, N., Butler, A. R., Smith, I. P., and Cundliffe, E. (2000) The mycarose-biosynthetic genes of Streptomyces fradiae, producer of tylosin, Microbiology 146 ( Pt 1), 139-146. [122] Kiessling, L. L., and Splain, R. A. (2010) Chemical approaches to glycobiology, Annu. Rev. Biochem. 79, 619-653. [123] Yoon, S. H., Fulton, D. B., and Robyt, J. F. (2010) Enzymatic synthesis of L-DOPA alpha-glycosides by reaction with sucrose catalyzed by four different glucansucrases from four strains of Leuconostoc mesenteroides, Carbohydr. Res. 345, 1730-1735. [124] Schroeder, C., Lutterbach, R., and Stöckigt, J. (1996) Preparative biosynthesis of natural glucosides and fluorogenic substrates for β-glucosidases followed by in vivo 13C NMR with high density plant cell cultures, Tetrahedron 52, 925-934. [125] Zhou, M., Hamza, A., Zhan, C. G., and Thorson, J. S. (2013) Assessing the regioselectivity of OleD-catalyzed glycosylation with a diverse set of acceptors, J. Nat. Prod. 76, 279-286. [126] Commodari, F., Sclavos, G., Ibrahimi, S., Khiat, A., and Boulanger, Y. (2005) Comparison of 17β‐estradiol structures from X‐ray diffraction and solution NMR, Magn. Reson. Chem. 43, 444-450. [127] Talisman, I. J., Kumar, V., Deschamps, J. R., Frisch, M., and Malhotra, S. V. (2011) Application of silver N-heterocyclic carbene complexes in O-glycosidation reactions, Carbohydr. Res. 346, 2337-2341. [128] Ogiso, M., Fujimoto, Y., Ikekawa, N., and Ohnishi, E. (1986) Glucosidation of estradiol-17β in the cultured ovaries of the silkworm,Bombyx mori, Gen. Comp. Endocrinol. 61, 393-401. [129] Xu, S., Yan, X., Zhang, Q., Xia, P., and Chen, Y. (2007) Unexpected rearrangement in the reaction of 7‐mercapto‐4‐methylcoumarin with 1‐mono‐and 1, 1‐dimethyl propargyl alcohols, Synth. Commun. 37, 3801-3808. [130] Dasgupta, F., and Garegg, P. J. (1989) Synthesis of ethyl and phenyl 1-thio-1,2-trans-D-glycopyranosides from the corresponding per-O-acetylated glycopyranoses having a 1,2-trans-configuration using anhydrous ferric-chloride as a promoter, Acta Chem. Scand. 43, 471-475. [131] Ikeda, Y., Furukawa, K., and Yamada, H. (2002) Simultaneous regioselective protection of phenyl 1-thioglucosides at the C-3 and C-6 or at the C-2 and C-6 hydroxy groups, Carbohydr. Res. 337, 1499-1501. [132] Tanaka, T., Matsumoto, T., Noguchi, M., Kobayashi, A., and Shoda, S. (2009) Direct transformation of unprotected sugars to aryl 1-thio-β-glycosides in aqueous media using 2-chloro-1, 3-dimethylimidazolinium chloride, Chem. Lett. 38, 458-459. [133] Katayama, H., Asahina, Y., and Hojo, H. (2011) Chemical synthesis of the S‐linked glycopeptide, sublancin, J. Pept. Sci. 17, 818-821. [134] Thibodeaux, C. J., Melancon, C. E., and Liu, H. W. (2007) Unusual sugar biosynthesis and natural product glycodiversification, Nature 446, 1008-1016. [135] Cowley, D., Duke, C., Liepa, A., MacLeod, J., and Letham, D. (1978) The structure and synthesis of cytokinin metabolites. 1. The 7-and 9-β-D-glucofuranosides and pyranosides of zeatin and 6-benzylaminopurine, Aust. J. Chem. 31, 1095-1111. [136] Letham, D., Wilson, M., Parker, C., Jenkins, I., MacLeod, J., and Summons, R. (1975) Regulators of cell division in plant tissues: XXIII. The identity of an unusual metabolite of 6-benzylaminopurine, Biochimica et Biophysica Acta (BBA)-General Subjects 399, 61-70. [137] Okkels, F. T., Ward, J. L., and Joersbo, M. (1997) Synthesis of cytokinin glucuronides for the selection of transgenic plant cells, Phytochemistry 46, 801-804. [138] Du, W., and Hu, Y. (2004) Synthesis of fully protected N‐arylglycosylamines and factors affecting the configuration of C1‐substituents of N‐arylglycosylamines, Synth. Commun. 34, 2987-2992. [139] Wirth, D. D., Baertschi, S. W., Johnson, R. A., Maple, S. R., Miller, M. S., Hallenbeck, D. K., and Gregg, S. M. (1998) Maillard reaction of lactose and fluoxetine hydrochloride, a secondary amine, J. Pharm. Sci. 87, 31-39. [140] Pamplona, R., Bellmunt, M. J., Portero, M., Riba, D., and Prat, J. (1995) Chromatographic evidence for Amadori product formation in rat liver aminophospholipids, Life Sci. 57, 873-879. [141] Aumiller, J. J., Mabashi-Asazuma, H., Hillar, A., Shi, X., and Jarvis, D. L. (2011) A new glycoengineered insect cell line with an inducibly-mammalianized protein N-glycosylation pathway, Glycobiology. 22, 417-428. [142] Valliere-Douglass, J. F., Eakin, C. M., Wallace, A., Ketchem, R. R., Wang, W., Treuheit, M. J., and Balland, A. (2010) Glutamine-linked and non-consensus asparagine-linked oligosaccharides present in human recombinant antibodies define novel protein glycosylation motifs, J. Biol. Chem. 285, 16012-16022. [143] Lomino, J. V., Naegeli, A., Orwenyo, J., Amin, M. N., Aebi, M., and Wang, L.-X. (2013) A two-step enzymatic glycosylation of polypeptides with complex N-glycans, Bioorganic & Medicinal Chemistry. 21, 2262-2270. [144] Li, T., Du, Y., Cui, Q., Zhang, J., Zhu, W., Hong, K., and Li, W. (2013) Cloning, characterization and heterologous expression of the indolocarbazole biosynthetic gene cluster from marine-derived Streptomyces sanyensis FMA, Mar. Drugs 11, 466-488. [145] Zhao, P., Bai, L., Ma, J., Zeng, Y., Li, L., Zhang, Y., Lu, C., Dai, H., Wu, Z., and Li, Y. (2008) Amide N-glycosylation by Asm25, an N-glycosyltransferase of ansamitocins, Chem. Biol. 15, 863-874. [146] Sakakibara, H. (2006) Cytokinins: activity, biosynthesis, and translocation, Annu. Rev. Plant Biol. 57, 431-449. [147] Breton, C., Šnajdrová, L., Jeanneau, C., Koča, J., and Imberty, A. (2006) Structures and mechanisms of glycosyltransferases, Glycobiology 16, 29R-37R. [148] Bolam, D. N., Roberts, S., Proctor, M. R., Turkenburg, J. P., Dodson, E. J., Martinez-Fleites, C., Yang, M., Davis, B. G., Davies, G. J., and Gilbert, H. J. (2007) The crystal structure of two macrolide glycosyltransferases provides a blueprint for host cell antibiotic immunity, Proceedings of the National Academy of Sciences 104, 5336-5341. [149] Bouktaib, M., Atmani, A., and Rolando, C. (2002) Regio- and stereoselective synthesis of the major metabolite of quercetin, quercetin-3-O-β-D-glucuronide, Tetrahedron Lett. 43, 6263-6266. [150] 呂佳諭. (2011) 枯草桿菌 UDP-glycosyltransferase 之重要胺基酸殘基分析及其應用, pp 1-55, 交通大學應用化學系學位論文. [151] Kwon, D.-J., and Bae, Y.-S. (2013) Flavonols from the stem bark of Acer komarovii, Chem. Nat. Compd. 49, 131-132. [152] Ibraheim, Z. Z., and Salem, H. A. (2002) Phytochemical and pharmacological studies on Pulicaria orientalis jaub & sp, Bulletin of pharmaceutical sciences-assiut university 25, 189-200. [153] Lemańska, K., Szymusiak, H., Tyrakowska, B., Zieliński, R., Soffers, A. E. M. F., and Rietjens, I. M. C. M. (2001) The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones, Free Radic. Biol. Med. 31, 869-881. [154] Razavi, S. M., Zahri, S., Zarrini, G., Nazemiyeh, H., and Mohammadi, S. (2009) Biological activity of quercetin-3-O-glucoside, a known plant flavonoid, uss. J. Bioorg. Chem. 35, 376-378. [155] Süntar, I. P., Akkol, E. K., Yalçın, F. N., Koca, U., Keleş, H., and Yesilada, E. (2010) Wound healing potential of Sambucus ebulus L. leaves and isolation of an active component, quercetin 3-O-glucoside, J. Ethnopharmacol. 129, 106-114. [156] Cermak, R., Landgraf, S., and Wolffram, S. (2004) Quercetin glucosides inhibit glucose uptake into brush-border-membrane vesicles of porcine jejunum, Br. J. Nutr. 91, 849-855. [157] Kim, M.-S., and Kim, S.-H. (2011) Inhibitory effect of astragalin on expression of lipopolysaccharide-induced inflammatory mediators through NF-κB in macrophages, Arch. Pharmacal Res. 34, 2101-2107. [158] Choi, J., Kang, H. J., Kim, S. Z., Kwon, T. O., Jeong, S.-I., and Jang, S. I. (2013) Antioxidant effect of astragalin isolated from the leaves of Morus alba L. against free radical-induced oxidative hemolysis of human red blood cells, Arch. Pharmacal Res. 36, 912-917. [159] Kwon, H.-J., and Park, Y.-D. (2012) Determination of astragalin and astragaloside content in Radix Astragali using high-performance liquid chromatography coupled with pulsed amperometric detection, J. Chromatogr. 1232, 212-217. [160] Malla, S., Pandey, R. P., Kim, B. G., and Sohng, J. K. (2013) Regiospecific modifications of naringenin for astragalin production in Escherichia coli, Biotechnol. Bioeng. 110, 2525-2535. [161] Lee, Y. J., and Wu, T. D. (2001) Total synthesis of kaempferol and methylated kaempferol derivatives, J. Chin. Chem. Soc. 48, 201-206. [162] Ye, G., and Huang, C. (2006) Flavonoids of Limonium aureum, Chem. Nat. Compd. 42, 232-234. [163] Vale, H. F., M Mendes, M., S Fernandes, R., R Costa, T., IS Hage-Melim, L., A Sousa, M., Hamaguchi, A., I Homsi-Brandeburgo, M., C Franca, S., and HTP Silva, C. (2011) Protective effect of schizolobium parahyba flavonoids against snake venoms and isolated toxins, Curr. Top. Med. Chem. 11, 2566-2577. [164] Iyer, V., and Subrahmanyam, V. (1985) Effect of structure on surfactance of sodium-salts of n-acylamino acids in aqueous-solutions, J. Indian Chem. Soc. 62, 507-512. [165] Delmer, D. P., and Amor, Y. (1995) Cellulose biosynthesis, The Plant Cell 7, 987. [166] Römling, U., and Galperin, M. Y. (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions, Trends Microbiol. 23, 545-557. [167] Macheda, M. L., Rogers, S., and Best, J. D. (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer, J. Cell. Physiol. 202, 654-662. [168] Brown, R. S., and Wahl, R. L. (1993) Overexpression of glut‐1 glucose transporter in human breast cancer an immunohistochemical study, Cancer 72, 2979-2985. [169] Kurata, T., Oguri, T., Isobe, T., Ishioka, S. i., and Yamakido, M. (1999) Differential expression of facilitative glucose transporter (GLUT) genes in primary lung cancers and their liver metastases, Jap. J. Cancer Res. 90, 1238-1243. [170] Calvaresi, E. C., and Hergenrother, P. J. (2013) Glucose conjugation for the specific targeting and treatment of cancer, Chemical Science 4, 2319-2333. [171] Norris, A. J., Whitelegge, J. P., Faull, K. F., and Toyokuni, T. (2001) Analysis of enzyme kinetics using electrospray ionization mass spectrometry and multiple reaction monitoring: fucosyltransferase V, Biochemistry 40, 3774-3779.
|