|
[1] Qinghua Sun, MD, PhD; Aixia Wang, BS; Ximei Jin, BS “Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model”. JAMA. 2005;294(23):3003-3010 [2] Michelle L. Block and Lilian Calderón-Garcidueñas “ Air pollution: mechanisms of neuroinflammation and CNS disease”. Volume 32, Issue 9, September 2009, Pages 506-516 [3] Sermin Genc, Zeynep Zadeoglulari, Stefan H. Fuss, and Kursad Genc “The Adverse Effects of Air Pollution on the Nervous System”. Journal of Toxicology, Volume 2012, Article ID 782462, 23 pages [4] https://taqm.epa.gov.tw/taqm/tw/default.aspx [5]http://opendata.cwb.gov.tw/index;jsessionid=416B2ABE26E7F596D55EAF0D75CDE0B6 [6] Yong Liu a, Huaicheng Guo, Guozhu Mao, Pingjian Yang “A Bayesian hierarchical model for urban air quality prediction under uncertainty”. Atmospheric Environment 42 (2008) 8464–8469 [7] Qingping Zhou, Haiyan Jiang , Jianzhou Wang, Jianling Zhou “A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network”. Science of the Total Environment 496 (2014) 264–274 [8] Ana Russo, Frank Raischel, Pedro G. Lind “Air quality prediction using optimal neural networks with stochastic variables”. Atmospheric Environment 79 (2013) 822 - 830 [9] M.A. Elangasinghe, N. Singhal, K.N. Dirks, J.A. Salmond, S. Samarasinghe, “Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modelling and k-means clustering”. Atmospheric Environment 94 (2014) 106 - 116 [10] Sankar Ganesh S, Sri Harsha Modali, Soumith Reddy Palreddy, Dr. Arulmozhivarman P, “Forecasting air quality index using regression models: A case study on Delhi and Houston”. 2017 International Conference on Trends in Electronics and Informatics (ICEI), 248 – 254 [11] Ke Hu, Vijay Sivaraman, Hari Bhrugubanda, Shiying Kang, Ashfaqur Rahman, “SVR based dense air pollution estimation model using static and wireless sensor network”. 2016 IEEE SENSORS, Pages: 1 - 3 [12] Aorong Luo, Xiaoli Li, Yang Li, Jiangeng Li, “Application of accurate online support vector regression in atmospheric SO2 concentration prediction”. 2018 Chinese Control And Decision Conference (CCDC), Pages: 6274 - 6279 [13] Fangchen Su, Yinliang Xu, Xiaoying Tang, “Short-and mid-term load forecasting using machine learning models”. 2017 China International Electrical and Energy Conference (CIEEC), Pages: 406 - 411 [14] Mihaela Oprea, Marian Popescu, Sanda Florentina Mihalache, “A neural network based model for PM2.5 air pollutant forecasting”. 2016 20th International Conference on System Theory, Control and Computing (ICSTCC), Pages: 776 - 781 [15] K. Siwek, S. Osowski, M. Sowinski, “Neural predictor ensemble for accurate forecasting of PM10 pollution”. The 2010 International Joint Conference on Neural Networks (IJCNN), Pages: 1 – 7 [16] S. H. Yu, Y. S. Koo, E. Y. Ha, H. Y. Kwon, “PM-10 Forecasting Using Neural Networks Model’’. 2008 International Conference on Computational Intelligence for Modelling Control & Automation, Pages: 426 – 429 [17] Giovanni Raimondo, Alfonso Montuori, Walter Moniaci, Eros Pasero, Esben Almkvist, “Data-driven models to forecast PM10 concentration’’. 2007 International Joint Conference on Neural Networks, Pages: 190 - 194 [18] Fani A. Tzima, Kostas D. Karatzas, Pericles A. Mitkas, Stavros Karathanasis, “Using data-mining techniques for PM10 forecasting in the metropolitan area of Thessaloniki, Greece’’. 2007 International Joint Conference on Neural Networks, Pages: 2752 - 2757
|